Skip to main content

Transposon expression and repression in skeletal muscle

Abstract

Transposons and their derivatives make up a major proportion of the human genome, but they are not just relics of ancient genomes. They can still be expressed, potentially affecting the transcription of adjacent genes, and can sometimes even contribute to their coding sequence. Active transposons can integrate into new sites in the genome, potentially modifying the expression of nearby loci and leading to genetic disorders. In this review, we highlight work exploring the expression of transposons in skeletal muscles and transcriptional regulation by the KRAB-ZFP/KAP1/SETDB1 complex. We next focus on specific cases of transposon insertion causing phenotypic variation and distinct muscular dystrophies, as well as the implication of transposon expression in immune myopathies. Finally, we discuss the dysregulation of transposons in facioscapulohumeral dystrophy and aging.

Background

Transposable elements (TEs) are DNA sequences that are able or were at one time able to be duplicated and reinserted into the genome. On average, TEs represent 45.6% of mammalian genomes, with high correlation between TE content and genome size [1]. This statistic alone is evidence that TEs have participated in evolution, but are they still contributing to our physiology? While TE regulation has been extensively studied in embryonic stem cells and germ cells, we know much less about their regulation in somatic tissues. Deregulated expansion of TE sequences has frequently been found in cancer genomes, especially epithelial cancers [2, 3]. In normal brain development, TE expression is dynamically regulated [4], and repression of a specific family of TEs is essential for formation of the pancreas [5]. TE regulation may also be an important component of regenerative processes [6]. Skeletal muscle is a highly regenerative tissue and the focus of this review is on how TEs directly and indirectly influence skeletal muscle in various contexts, including regeneration, disease, and aging.

Introduction to TEs

The discovery of transposable elements by Barbara McClintock was a major genetic breakthrough of the last century [7]. TEs are thought to play a major role in the evolution of species and are especially prevalent in eukaryotes [8]. Certain TE sequences contain binding sites for transcription factors, and their spread has had a major impact on gene regulatory networks [9], reviewed in [10]. As an example, the MER41 transposon has been co-opted by the interferon signaling pathway involved in innate immune signaling [11]. Individual copies of the transposon have distributed binding sites for the STAT1 transcription factor near multiple genes of the pathway, allowing for their synchronized upregulation upon interferon stimulation.

TEs can be separated into two main classes via their transposition mechanism [12]. Class I TEs, also known as retrotransposons, represent around 44% of the human genome. They depend on a copy-and-paste mechanism of their RNA to transpose [13, 14]. Retrotransposons are mainly long terminal repeat (LTR) retrotransposons represented in humans by the human endogenous retroviruses (HERVs) and their subtypes, or non-LTR retrotransposons [12, 15]. This nomenclature comes from the presence of LTR sequences derived from the original retroviral genome, necessary for viral packaging. Non-LTR retrotransposons consist of three subfamilies: Long Interspersed Nuclear Elements (LINE), Short Interspersed Nuclear Elements (SINE) and SINE-R/VNTR/Alu (SVA) elements [16,17,18]. Class II TEs are defined as DNA transposons that mobilize using a cut-and-paste strategy [12].

With the advent of progressively more advanced sequencing technologies, it is clear that transposon activity has and continues to affect all tissues, including the skeletal muscle. This review will highlight different instances of transposon insertion consequences, including changes in expression of nearby genes, disruption of open reading frames and modification of splicing patterns (Fig. 1). These modifications can be beneficial or detrimental to muscle health. However, many insertions are neutral, having no impact on muscle fitness, and thus less studied.

Fig. 1
figure 1

Transposon insertion effects on coding genes. Examples from muscle studies are given. Left: TE insertions can affect transcription of nearby genes, possibly as carriers of binding sites for transcription factors like KRAB-ZFPs. Middle: The insertion of a TE inside a gene can lead to inclusion of the TE sequence inside a coding transcript, leading to frameshifts, early stop codons or nonsense-mediated decay. Right: TE insertions can generate novel protein isoforms with new functional domains

Skeletal muscle and regeneration

Healthy skeletal muscle is largely composed of contractile, multinucleated myofibers, with a supporting cast of stem cells, endothelial cells, fibroblasts, and resident immune cells. These distinct cell populations contribute to general tissue function, but can be rapidly mobilized for repair after injury. The regeneration process in skeletal muscle is orchestrated around the activation of the essential satellite cells (also known as muscle stem cells) and their commitment to a synchronized myogenic program [19]. Genetic ablation studies have also shown requirements for macrophages and fibroblasts in efficient regeneration [20, 21]. Muscle satellite cells undergo remarkable epigenetic and transcriptional changes during regeneration [22, 23], and reestablish the satellite cell pool once repair is completed [24]. The three key phases of the process are inflammation, regeneration and remodeling. Briefly, damaged myofibers are resorbed by macrophages in the first days following injury, while satellite cells undergo activation associated with metabolic and epigenetic modifications, and extensive proliferation before differentiating to form new myocytes, which fuse together to form large, multinucleated myofibers. A subset of activated satellite cells will self-renew to restore the pool of quiescent muscle stem cells [25]. Despite few studies on TE expression states during skeletal muscle regeneration, several groups have highlighted the importance and the role of TE balance between activation and repression in the regeneration process in other tissues, especially in regulation of the inflammatory stages, stem cell potency and equilibrium between pro-inflammatory and anti-inflammatory states [6].

Transposon expression in skeletal muscle

The first reports of transposon expression in skeletal muscle came from bioinformatic analysis of expressed sequence tags (ESTs). 0.82% of ESTs expressed in human skeletal muscle contained endogenous retrovirus sequences [26]. This study used Repeatmasker and Repbase version 7.2 [27] for transposon assignment, and GenBank Flat File (Release 131) and UniGene (Build 154) for EST analysis. Bioinformatic resources for transposon expression analyses have improved significantly in the last two decades, and therefore it is probable that these early estimates should be revisited. Using RT-PCR the same group showed that the envelope (env) gene of HERV-H is expressed specifically in the skeletal muscle, placenta, spleen and thymus, as well as a number of different cell lines [28]. Other groups also showed through bioinformatic analysis that specific retrotransposons and primate-specific Alu elements are included in gene exons specifically in the muscle [29, 30]. While rare, 4 human genes with transposon inclusion in coding sequence were identified in the first study [29]. In the second study, researchers focused on the inclusion of Alu sequences and found a muscle-specific inclusion in selenoprotein 1 (SEPN1), a gene implicated in a rare muscular dystrophy [30]. The inclusion was more prevalent in human muscle transcripts as compared to macaque and chimpanzee, suggesting recent evolutionary changes. With the development of antibodies recognizing env protein from specific retrotransposons, researchers showed that ERV3 TEs are translated in human muscle [31]. The analysis of RNA-seq data from rat tissues revealed relatively few TEs specifically expressed in the muscle, in comparison with other tissues including the testis and brain [32]. However, Cap Analysis Gene Expression (CAGE) data from mouse tissues showed tissue-specific expression patterns of different retrotransposons, including in the muscle [33].

The studies described above examined transposon expression at the level of the entire muscle, but the muscle is made up of many distinct cell types, including myofibers, satellite stem cells, vascular, immune and mesenchymal cells. It will be important to determine the individual cell types expressing specific transposons with single cell/nuclei RNA sequencing and algorithms such as SoloTE [34].

It remains to be seen whether the expression of many of the above TEs has an impact on muscle physiology, or if they are just expressed due to nearby gene transcription. However, there are specific regulatory pathways required for TE silencing, that are now known to be crucial for skeletal muscle regeneration.

Transposon repression in muscle

The majority of TEs are epigenetically silenced, especially by methylation of DNA and histone 3 lysine 9 (H3K9). While several different systems for this silencing have been identified, one of the most well-characterized is the Krüppel-associated box zinc finger protein (KRAB-ZFP) family of transcription factors, which recruit the repressive cofactor KRAB-associated protein 1, also known as Tripartite motif containing 28 (KAP1/TRIM28), along with the H3K9 methyltransferase Su(var)3–9, Enhancer of Zeste and Trithorax domain bifurcated histone lysine methyltransferase 1 (SETDB1) to TE sequences for methylation and epigenetic repression. [35,36,37]. (Fig. 1). KRAB-ZFPs compose the largest transcription factor family in humans and include more than 350 different encoded proteins [38]. They are distinguished by their classical structure of a KRAB domain at the N-terminus and a C2H2 zinc finger array at the C-terminus [39]. The zinc fingers bind DNA targets and recruit KAP1/TRIM28 via the KRAB domain [40]. The N-terminal domains of KAP1 directly interact with the KRAB domain, while the C-terminal portion contains a plant homeodomain (PHD) finger and a Bromodomain, which are crucial for recruiting the NuRD histone deacetylase complex and the H3K9-specific methyltransferase SETDB1, aiding in chromatin condensation [41, 42]. These domains promote the formation of heterochromatin marked by low histone acetylation and high tri-methylation of H3K9 (H3K9me3).

KRAB-ZFPs display cell type-specific patterns of expression [9, 43], suggesting they may be regulating cell-specific features. Concordantly, the deletion of their cofactor KAP1 derepresses distinct TEs in different tissues [43]. In the C2C12 mouse myoblast cell line, KAP1 knockdown led to upregulation of MERVK10C-int, while SETDB1 knockdown upregulated MERVK10C, IAP-d and IAPEz TEs, all of which are subclasses of ERVKs.

In the same cell line KAP1 has been found to orchestrate myogenesis through the control of myoblast determination protein 1 (Myod) and myocyte-specific enhancer factor 2d (Mef2d) [44]. In proliferation conditions, it was suggested that KAP1 acts as a scaffold by targeting MYOD and MEF2D, bound to myogenesis regulatory regions, and recruits euchromatic histone-lysine N-methyltransferase 2 (EHMT2, also known as G9a) and histone deacetylase 1 (HDAC1) as chromatin inhibitors and E1A binding protein p300 (EP300) and lysine-specific histone demethylase 1A (LSD1) as chromatin activators. KAP1 maintains a strong silencing effect, until differentiation signals induce a Serine 473 (Ser473) specific phosphorylation by mitogen- and stress-activated protein kinase-1 (MSK1), releasing the G9a and HDAC1 inhibition and allowing the MYOD/MEF2D complex to induce differentiation [44]. Interestingly, phosphorylation of KAP1 at Ser473 is known to be induced by DNA damage [45]. KAP1 may also regulate differentiation of myoblasts through repression of miR-133a [46]. While the authors propose mechanisms for KAP1-mediated regulation of myogenic differentiation, the link with KZFPs and TE regulation was not explored. It is also possible that myogenic transcription factors and a KAP1-KZFP complex bound nearby sites in the DNA, without direct interaction. Furthermore, myogenic cell lines lack the complexity found in skeletal muscle in vivo. Fortunately, recent studies have investigated the role of KAP1 in specific cell types of mouse skeletal muscle.

In mice, KAP1 was reported to be involved in the regulation of muscle fiber size. It was reported that maximal intensity contractions experiments (inducing hypertrophy), demonstrated a robust Ser473 phosphorylation of KAP1. KAP1 muscle-specific knock out (KO) mice had an attenuated hypertrophy response, while hypertrophy was induced upon expression of a Ser473 phosphomimetic mutant. In addition, KAP1 absence led to a decrease in muscle mass, smaller glycolytic fibers and altered contractions [47]. A follow-up study showed that KAP1 partially regulates muscle size through a protein degradation-mediated pathway, specifically via Mettl21c, a skeletal muscle-specific protein methyltransferase. The overexpression of Mettl21c causes an increase in muscle size, inducing hypertrophy. However, it is not clear if KAP1 and Mettl21c have a direct or an indirect interaction as protein degradation studies represent a challenge in the muscle field [48]. More work is also required to see whether or not TE repression is involved in this pathway.

When KAP1 is inducibly deleted in the satellite cells of the muscle, there is no impact on their number two weeks following tamoxifen induction [49]. However, KAP1 KO satellite cells are not able to regenerate the muscle following injury, due to defects in fusion of regenerating myotubes and excessive fibrosis. Elegant genetic experiments demonstrated that this defect does not depend on the phosphorylation of Ser473 detailed above. Mechanistically, the fusion defect appears to be linked to regulation of the Myomixer gene, crucial for myoblast fusion [50,51,52]. Studies on the impact of transposon expression will be necessary to determine whether loss of KAP1, TE mobilization and myogenesis are functionally linked.

Recent work suggests that active repression of ERV loci by Setdb1 is required in satellite cells to allow skeletal muscle regeneration to proceed [53]. The deletion of the Setdb1 gene in satellite cells has no impact on the muscle during homeostasis, but following cardiotoxin injury, Setdb1 KO satellite cells upregulate a number of HERVs and cytokines, activating cGAS signaling (Table 1). This perturbs immune cell dynamics in the regenerating muscle. Furthermore, satellite cells upregulate cell cycle inhibitor genes and a significant fraction of them undergo apoptosis. These defects lead to major muscle regeneration impairment one month later ([53], Fig. 2). In contrast with the results of the satellite cell knock out of Kap1/Trim28, Setdb1 KO cells showed no defects in fusion of muscle cells in vitro. The authors also show that the deletion of Sedb1 in fibroblasts of the muscle has no impact on muscle regeneration.

Table 1 Muscle-specific expression of TEs. The classification of TE comes directly from the nomenclature of the cited reference. Note that all upregulated TEs in mouse myoblasts and satellite cells with knockdown/knockout of KAP1 or SETDB1 belong to the ERVK or ERV1 class
Fig. 2
figure 2

Roles of KAP1/TRIM28 and SETDB1 in muscle physiology and regeneration. Top: In myogenic cells KAP1 associates with KRAB-ZFPs and SETDB1 to silence TEs through H3K9me3, but also forms a distinct repressive complex at the Myog promoter, a gene essential for differentiation. Phosphorylation of KAP1 leads to dissociation of specific corepressors, allowing Myogenin transcription and differentiation. However, it is possible that a KAP1-KZFP complex and myogenic transcription factors bind to nearby sequences in the promoter, without directly interacting. Phosphorylation of KAP1 is also associated with exercise-induced hypertrophy. Bottom: Consequences of KAP1 or SETDB1 loss in muscle stem cells on muscle regeneration. Normally, satellite cells activate 3–4 days after injury, myotubes fuse between 7 and 10 days post-injury, and regeneration is complete between 21 and 28 days post-injury. When KAP1 is absent from the satellite cells, myotubes do not fuse and excessive fibrosis persists during regeneration. When Setdb1 is knocked out in satellite cells, the CGAS-STING pathway is activated, leading to elimination of satellite cells by the immune system. The early loss of the critical satellite cells abrogates muscle regeneration

The demonstration that satellite cells lacking either Kap1 or Setdb1 cannot effectively regenerate skeletal muscle suggests that transposon regulation plays an important role in this process. In fact, recent work has also implicated Setdb1 in regeneration of the skin [54], suggesting that TE repression may be an important step in regenerative processes in general. However, the individual KRAB-ZFP proteins that recruit KAP1 and SETDB1 to TEs for repression in the muscle are not well defined.

Transposons and phenotypic variation in muscle

One consequence of transposon insertion inside or near a gene is a change in its expression. Depending on the gene, this can be beneficial. Insertion of an equine repetitive element 1 (ERE-1) SINE into the Myostatin gene promoter was highly associated with optimum racing distance for Thoroughbred racehorses [55]. Analysis of myostatin levels in the serum of these horses showed a significant drop in heterozygotes relative to wildtypes and even less myostatin in homozygotes for the insertion [56]. Testing the variants with and without the insertion in reporter assays revealed that the promoter with the insertion caused a 4- to sevenfold reduction in expression, depending on the species of cells transfected (horse or human) [57]. Thoroughbred horses with the insertion had a decrease in type 1 oxidative myofibers and an increase in type 2B glycolytic myofibers in the middle gluteal muscle [58]. Non-transposon mutations in myostatin have been associated with increased muscle mass in multiple species, including cows and mice [59, 60]. The extensor digitorum longus (EDL) muscle of Myostatin knock-out mice also displays an increase in type 2B glycolytic myofibers, and wildtype mouse EDL muscle expresses low levels of myostatin [61].

The syncytin genes are derived from the env gene of an endogenous retrovirus, and are essential for placentation in mice [62, 63]. They encode fusogenic proteins, allowing for the formation of cellular syncytia, in which one cytoplasm contains multiple nuclei. The placenta and mature myofibers are both examples of syncytia. The deletion of syncytin-B compromises muscle development and regeneration, but exclusively in male mice [64]. In vitro, knock down of syncytin genes reduced fusion in primary myoblasts from human, sheep and dog. This suggests that these retrovirally derived genes have had a major impact on mammalian musculature, as well as formation of the placenta.

Transposons and muscular dystrophy

Transposons can also insert inside protein-coding genes important for skeletal muscle formation, which can directly affect muscle development or lead to muscular dystrophy (Table 2). One of the first cases identified of a retrotransposon inducing a human disease was described in 1993, in two brothers with Duchenne muscular dystrophy, where a long interspersed nuclear element 1 (LINE-1/L1) copy inserted into exon 44 of the Duchenne muscular dystrophy (Dmd) gene [65]. The insertion induced skipping of exon 44, and thus a frame shift leading to an early stop codon. The study of a family containing 10 individuals with symptoms ranging from the mild Becker muscular dystrophy to Duchenne muscular dystrophy revealed a distinct LINE-1 insertion in exon 48 of the Dmd gene [66]. In this case, exon 48 was skipped, leading to a short, in-frame deletion, consistent with a milder dystrophic phenotype. Additional, distinct LINE-mediated insertions into the Dmd gene have been described [67, 68]. LINE-1 insertion into the Dmd gene is also the origin of a spontaneous dog model of the disease [69]. Sequencing of cDNA from affected Pembroke Welsh corgi dogs revealed 168 bp of LINE-1 sequence containing a stop codon between exons 13 and 14. Another spontaneous model of muscular dystrophy in mice derived from the insertion of retrotransposon sequences into laminin alpha 2, a gene involved in formation of the extracellular matrix and muscle function [70]. The insertion consisted of the 5’ LTR of an IAP element (a mouse-specific retrotransposon) and an F-type LINE-1 sequence. Due to compatible splice sites flanking the IAP LTR, it inserted into the mRNA, leading to a stop codon 12 codons later. This eliminated important portions of the protein, causing muscle disease.

Table 2 TE insertions causing muscle disease

The insertion of a SINE and associated repetitive sequences in the Fukutin gene is prevalent in the Japanese population and found in the majority of Fukuyama-type congenital muscular dystrophy (FCMD) patients [71]. This insertion is found in the 3’ untranslated region of the gene, and affects the stability of the mRNA, as it is undetectable in patients homozygous for the insertion. In a specific cohort of labrador retrievers, a SINE insertion into exon 2 of the protein tyrosine phosphatase-like A (Ptpla, now known as 3-hydroxyacyl-CoA dehydratase 1 or Hacd1) gene caused centronuclear myopathy [72]. The insertion led to the production of many mRNA variants, and a drop in total transcripts to 35% of wildtype.

Several muscular dystrophies appear to be caused by transposition inside or near genes important for muscle development and function, but the simple transcription of transposons may also contribute to specific myopathies.

Transposon expression in myositis

Idiopathic Immune Myopathies (IIM), also referred to as Autoimmune Myositis (AIM) are a group of acquired autoimmune myopathies characterized by muscle inflammation and a range of muscular and extra-muscular manifestations. Although they were originally classified as Dermatomyositis (DM) and Polymyositis [73], the current classification includes DM, Immune Mediated Necrotizing Myopathy (IMNM) or Necrotizing Autoimmune Myopathy (NAM), Antisynthetase Syndrome (ASS) and Inclusion Body Myositis (IBM) [74,75,76,77]. The Interferon (IFN) system plays a major role in the pathophysiology of these diseases, where IFN type I (IFN-I) is associated mainly with DM and IFN type II (IFN-II) is more predominant in ASS and IBM (reviewed extensively in [78]. An alternative isoform of the interferon receptor alpha and beta receptor subunit 2 (IFNAR2) is produced by exonization of an Alu element, and can modulate type 1 signaling [79]. This isoform was expressed in all human tissues examined, including skeletal muscle.

It has been found that many autoimmune diseases are associated with an upregulation of LINE-1 elements, such as in Sjogren syndrome and systemic lupus erythematous [80]. Recently, studies have shown that LINE-1 expression is positively associated with IFN-1B levels in DM patients [81]. A follow-up study has shown that in DM patients LINE-1, HERVK14C and SVA elements were all upregulated and that DNMT3A expression was reduced resulting in LINE-1 promoter hypomethylation [82]. The interplay between LINE-1 regulation and the IFN-1 pathway is also known to be regulated by the HUSH complex, where LINE-1 upregulation can activate IFN-1 signaling [83].

Myositis can also present as a medication side effect, such as statin-induced myositis. Statins are drugs used as a preventative medication in cardiovascular patients to reduce endogenous cholesterol synthesis. It has been found that in human myoblasts treated with simvastatin, rosuvastatin or DMSO, high number of TEs were differentially expressed in the simvastatin group, and are associated to statin myopathy pathways such as AKT3 [84].

Facioscapulohumeral dystrophy (FSHD)

In humans, one muscle disease involves upregulation of a specific gene inducing expression of transposons: facioscapulohumeral muscular dystrophy (FSHD). This disease affects specific muscles of the face, shoulders and upper arms, leading to muscle weakness and atrophy [85]. FSHD was linked to a repetitive element, called D4Z4, in chromosome 4, with coding potential for a homeobox transcription factor [86]. D4Z4 repeats were present on other chromosomes, and in other species, including chick, pig and multiple primates. The coding region was later named DUX4 [87], and sequence analysis suggested it was derived by the retrotransposition of the gene DUXC [88]. DUX4 is expressed very briefly, at the 4-cell stage of human embryonic development, during which it binds to the promoters and activates many of the first genes to be expressed in the embryo [89, 90]. Specific TEs, including HERVL, are also activated. The mouse homologue of DUX4, DUX, is expressed at the 2-cell stage of mouse embryonic development, which corresponds to the same transcriptional stage, known as zygotic genome activation. The loss of DUX expression before this stage compromises mouse embryonic development. In human and mouse ES cells, DUX4 and DUX expression are extinguished, respectively, after the next cell division, and are not normally reactivated. However, the most common form of FSHD occurs when the array of D4Z4 repeats on chromosome 4 is reduced to 10 or less [91]. When this situation is paired with a specific polyA signal, the last D4Z4 repeat is functionally capable of producing the DUX4 protein in muscle cells [92]. While expression of DUX4 is nearly undetectable in the muscle of control and FSHD patients, it can be found in ~ 1/1000 FSHD myonuclei [93]. Interestingly, DUX4 overexpression in human myoblasts induces many genes normally expressed at the 4-cell stage, suggesting that the reappearance of an embryonic transcriptional program directly contributes to the pathology [89].

Lentiviral overexpression of DUX4 in human myoblasts modified the expression of more than 1800 genes relative to a GFP control lentivirus [94]. Furthermore, ChIP-seq analysis of transduced cells revealed DUX4 enrichment at Mammalian apparent LTR retrotransposon (MaLR) family elements, also upregulated in human embryos at the 4-cell stage [90] (Table3). RT-PCR experiments confirmed upregulation of MaLR transcripts in transduced myoblasts. The authors suggested that reactivation of retrotransposons might contribute to DUX4 expression-induced apoptosis [95], thus contributing to the FSHD dystrophic phenotype. Reanalysis of the ChIP-seq dataset with a more recent human genome assembly showed that about two thirds of DUX4 binding sites were found in repetitive elements [96]. DUX4 was able to activate transcription from a small proportion of TEs, including some which could function as alternative promoters for human genes. One of these genes, Hey1, represses myogenesis and is highly upregulated in FSHD muscle, suggesting a potential mechanism for transposon upregulation to contribute to the pathology, by blocking the formation of new myofibers. Nanopore long-read sequencing of RNA from rhabdomyosarcoma cells transfected with DUX4 revealed 247 gene endogenous retrovirus (ERV) fusion transcripts, suggesting additional mechanisms of disease [97].

Table 3 TE expression associated with human disease

FSHD is tightly linked to the derepression of DUX4, which in turn appears to activate TE expression. Whether or not these TEs, or the transcripts they induce, contribute to the pathology is an active area of research.

TEs in muscle aging and exercise

Upregulation of LINE elements has been reported in aging mouse and rat muscle [98, 99]. While this was not associated with physiological changes, the authors hypothesized the expression could lead to genomic destabilization and subsequent cellular dysfunction [98]. During muscle aging in mice, Min and colleagues showed that globally, retroelement DNA became more methylated. However, there was also a “regression toward the mean” in which individual elements that were hypomethylated had increases in methylation, while hypermethylated elements lost methylation with aging [100]. These changes were not seen in T cells, a control cell population examined in the study. The expression of retroelements decreased from 2 to 20 months but increased from 20 to 28 months.

LINE-1 DNA content was reduced in the muscle of young mice following treatment with nucleotide reverse transcriptase inhibitors (NRTIs), suggesting that there is active transcription and reinsertion of these sequences in the muscle [101]. In humans, LINE-1 elements become demethylated and their expression increases with aging [102]. However specific exercises in humans and rats can reduce this age-related de-repression [102,103,104,105]. In young patients, exercise reduced LINE-1 mRNA content, the translation of the associated open reading frame 2 protein (ORF2p) segment and more importantly increased the number of satellite cells [103]. While the significance of these changes has not been extensively studied, the authors hypothesized that since the AKT pathway is an important regulator of hypertrophy and satellite cell proliferation [103, 106, 107] and L1 inhibition enhances AKT signaling [108], both factors can be linked to the documented changes related to exercise. Recent work has shown that expression of HERV-W transposons increased in the blood of patients following strength training [109], but it is unclear if the muscle is the source of expression. More research is needed in the field of muscle aging, but transposon expression appears to hold some promise as a biomarker and potential target of rejuvenating muscle treatment.

Conclusions

TEs have undoubtedly played a major role in genome evolution, but their current participation in muscle physiology requires additional studies. There is clear mouse genetic data to suggest that TEs should be switched off in muscle stem cells for muscle regeneration to occur, but there are many more pieces of the puzzle to be investigated. It will be of particular interest to see if this regulation is important in other muscle cell types. Depending on the genomic context, the insertion of a transposon can improve running performance, or lead to severe muscular dystrophy. In some cases, even the transcription of transposons may be sufficient to cause muscle disorders. Retrotransposition is a common mode of gene duplication, but in the case of DUX4, expression of the gene can also lead to muscle disease, potentially through upregulation of additional TEs. Recent work suggests that transposons can be reactivated during muscle aging, though the consequences of this reactivation require further study. Thanks to rapid advances in sequencing technologies and sensitivity, answers to open questions about transposons in muscle biology are just around the corner, as are-inevitably-more questions.

Data availability

No datasets were generated or analysed during the current study.

References

  1. Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD; Zoonomia Consortium†; Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science. 2023;380(6643):eabn1430. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.abn1430. Epub 2023 Apr 28. PMID: 37104570; PMCID: PMC11103246.

  2. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P, Luquette LJ 3rd, Lohr JG, Harris CC, Ding L, Wilson RK, Wheeler DA, Gibbs RA, Kucherlapati R, Lee C, Kharchenko PV, Park PJ, Cancer Genome Atlas Research Network. Landscape of somatic retrotransposition in human cancers. Science. 2012;337(6097):967–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.1222077. Epub 2012 Jun 28. PMID: 22745252; PMCID: PMC3656569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH, Burns MB, Harris RS, Sigmon DF, Casella A, Erlanger B, Wheelan S, Upton KR, Shukla R, Faulkner GJ, Largaespada DA, Kazazian HH Jr. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res. 2012;22(12):2328–38. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.145235.112. Epub 2012 Sep 11. PMID: 22968929; PMCID: PMC3514663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Playfoot CJ, Duc J, Sheppard S, Dind S, Coudray A, Planet E, Trono D. Transposable elements and their KZFP controllers are drivers of transcriptional innovation in the developing human brain. Genome Res. 2021;31(9):1531–45. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.275133.120. Epub 2021 Aug 16. PMID: 34400477; PMCID: PMC8415367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Franco E, Owens NDL, Montaser H, Wakeling MN, Saarimäki-Vire J, Triantou A, Ibrahim H, Balboa D, Caswell RC, Jennings RE, Kvist JA, Johnson MB, Muralidharan S, Ellard S, Wright CF, Maddirevula S, Alkuraya FS, Pancreatic Agenesis Gene Discovery Consortium, Hanley NA, Flanagan SE, Otonkoski T, Hattersley AT, Imbeault M. Primate-specific ZNF808 is essential for pancreatic development in humans. Nat Genet. 2023;55(12):2075–81. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41588-023-01565-x. Epub 2023 Nov 16. PMID: 37973953; PMCID: PMC10703691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Angileri KM, Bagia NA, Feschotte C. Transposon control as a checkpoint for tissue regeneration. Development. 2022;149(22):dev191957. https://doiorg.publicaciones.saludcastillayleon.es/10.1242/dev.191957. Epub 2022 Nov 28. PMID: 36440631; PMCID: PMC10655923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. McClintock B. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A. 1950;36(6):344–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.36.6.344. PMID: 15430309; PMCID: PMC1063197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wells JN, Feschotte C. A field guide to eukaryotic transposable elements. Annu Rev Genet. 2020;54:539–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-genet-040620-022145. Epub 2020 Sep 21. PMID: 32955944; PMCID: PMC8293684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Imbeault M, Helleboid PY, Trono D. KRAB zinc-finger proteins contribute to the evolution of gene regulatory networks. Nature. 2017;543(7646):550–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature21683. Epub 2017 Mar 8 PMID: 28273063.

    Article  CAS  PubMed  Google Scholar 

  10. Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol. 2022;23(7):481–97. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41580-022-00457-y. Epub 2022 Feb 28. PMID: 35228718; PMCID: PMC10470143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chuong EB, Elde NC, Feschotte C. Regulatory evolution of innate immunity through co-option of endogenous retroviruses. Science. 2016;351(6277):1083–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.aad5497. PMID:26941318;PMCID:PMC4887275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvák Z, Levin HL, Macfarlan TS, Mager DL, Feschotte C. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13059-018-1577-z. PMID: 30454069; PMCID: PMC6240941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. 1993;72(4):595–605. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/0092-8674(93)90078-5. PMID: 7679954.

    Article  CAS  PubMed  Google Scholar 

  14. Whitcomb JM, Hughes SH. Retroviral reverse transcription and integration: progress and problems. Annu Rev Cell Biol. 1992;8:275–306. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev.cb.08.110192.001423. PMID: 1282352.

    Article  CAS  PubMed  Google Scholar 

  15. Gifford RJ, Blomberg J, Coffin JM, Fan H, Heidmann T, Mayer J, Stoye J, Tristem M, Johnson WE. Nomenclature for endogenous retrovirus (ERV) loci. Retrovirology. 2018;15(1):59. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12977-018-0442-1. PMID:30153831;PMCID:PMC6114882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet. 2011;12:187–215. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-genom-082509-141802. PMID: 21801021; PMCID: PMC4124830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J; International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001 Feb 15;409(6822):860–921. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/35057062. Erratum in: Nature 2001 Aug 2;412(6846):565. Erratum in: Nature 2001 Jun 7;411(6838):720. Szustakowki, J [corrected to Szustakowski, J]. PMID: 11237011.

  18. Wang H, Xing J, Grover D, Hedges DJ, Han K, Walker JA, Batzer MA. SVA elements: a hominid-specific retroposon family. J Mol Biol. 2005;354(4):994–1007. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jmb.2005.09.085. Epub 2005 Oct 19 PMID: 16288912.

    Article  CAS  PubMed  Google Scholar 

  19. Relaix F, Zammit PS. Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development. 2012;139(16):2845–56. https://doiorg.publicaciones.saludcastillayleon.es/10.1242/dev.069088. PMID: 22833472.

    Article  CAS  PubMed  Google Scholar 

  20. Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, Gherardi RK, Chazaud B. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69. https://doiorg.publicaciones.saludcastillayleon.es/10.1084/jem.20070075. Epub 2007 May 7. PMID: 17485518; PMCID: PMC2118577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wosczyna MN, Konishi CT, Perez Carbajal EE, Wang TT, Walsh RA, Gan Q, Wagner MW, Rando TA. Mesenchymal stromal cells are required for regeneration and homeostatic maintenance of skeletal muscle. Cell Rep. 2019;27(7):2029-2035.e5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2019.04.074. PMID:31091443;PMCID:PMC7034941.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Machado L, Esteves de Lima J, Fabre O, Proux C, Legendre R, Szegedi A, Varet H, Ingerslev LR, Barrès R, Relaix F, Mourikis P. In situ fixation redefines quiescence and early activation of skeletal muscle stem cells. Cell Rep. 2017;21(7):1982–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2017.10.080. PMID: 29141227.

    Article  CAS  PubMed  Google Scholar 

  23. Machado L, Geara P, Camps J, Dos Santos M, Teixeira-Clerc F, Van Herck J, Varet H, Legendre R, Pawlotsky JM, Sampaolesi M, Voet T, Maire P, Relaix F, Mourikis P. Tissue damage induces a conserved stress response that initiates quiescent muscle stem cell activation. Cell Stem Cell. 2021;28(6):1125-1135.e7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.stem.2021.01.017. Epub 2021 Feb 19 PMID: 33609440.

    Article  CAS  PubMed  Google Scholar 

  24. Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med. 2009;266(4):372–89. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1365-2796.2009.02158.x. PMID: 19765181.

    Article  CAS  PubMed  Google Scholar 

  25. Laumonier T, Menetrey J. Muscle injuries and strategies for improving their repair. J Exp Orthop. 2016;3(1):15. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s40634-016-0051-7. Epub 2016 Jul 22. PMID: 27447481; PMCID: PMC4958098.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kim TH, Jeon YJ, Yi JM, Kim DS, Huh JW, Hur CG, Kim HS. The distribution and expression of HERV families in the human genome. Mol Cells. 2004;18(1):87–93 PMID: 15359128.

    Article  PubMed  Google Scholar 

  27. Jurka J. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 2000;16(9):418–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0168-9525(00)02093-x. PMID: 10973072.

    Article  CAS  PubMed  Google Scholar 

  28. Yi JM, Kim HM, Kim HS. Human endogenous retrovirus HERV-H family in human tissues and cancer cells: expression, identification, and phylogeny. Cancer Lett. 2006;231(2):228–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.canlet.2005.02.001. PMID: 16399224.

    Article  CAS  PubMed  Google Scholar 

  29. Mersch B, Sela N, Ast G, Suhai S, Hotz-Wagenblatt A. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet. 2007;6(8):78. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1471-2156-8-78. PMID:17986331;PMCID:PMC2194731.

    Article  CAS  Google Scholar 

  30. Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 2008;4(10):e1000225. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pgen.1000225. PMID:18841251;PMCID:PMC2562518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fei C, Atterby C, Edqvist PH, Pontén F, Zhang WW, Larsson E, Ryan FP. Detection of the human endogenous retrovirus ERV3-encoded Env-protein in human tissues using antibody-based proteomics. J R Soc Med. 2014;107(1):22–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/0141076813509981. Epub 2013 Nov 21. PMID: 24262892; PMCID: PMC3883148.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dong Y, Huang Z, Kuang Q, Wen Z, Liu Z, Li Y, Yang Y, Li M. Expression dynamics and relations with nearby genes of rat transposable elements across 11 organs, 4 developmental stages and both sexes. BMC Genomics. 2017;18(1):666. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12864-017-4078-7. PMID:28851270;PMCID:PMC5576108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, Irvine KM, Schroder K, Cloonan N, Steptoe AL, Lassmann T, Waki K, Hornig N, Arakawa T, Takahashi H, Kawai J, Forrest AR, Suzuki H, Hayashizaki Y, Hume DA, Orlando V, Grimmond SM, Carninci P. The regulated retrotransposon transcriptome of mammalian cells. Nat Genet. 2009;41(5):563–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.368. Epub 2009 Apr 19 PMID: 19377475.

    Article  CAS  PubMed  Google Scholar 

  34. Rodríguez-Quiroz R, Valdebenito-Maturana B. SoloTE for improved analysis of transposable elements in single-cell RNA-Seq data using locus-specific expression. Commun Biol. 2022;5(1):1063. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s42003-022-04020-5. PMID:36202992;PMCID:PMC9537157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schultz DC, Ayyanathan K, Negorev D, Maul GG, Rauscher FJ 3rd. SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 2002;16(8):919–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.973302. PMID:11959841;PMCID:PMC152359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolf D, Goff SP. TRIM28 mediates primer binding site-targeted silencing of murine leukemia virus in embryonic cells. Cell. 2007;131(1):46–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2007.07.026. PMID: 17923087.

    Article  CAS  PubMed  Google Scholar 

  37. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S, Aktas T, Maillard PV, Layard-Liesching H, Verp S, Marquis J, Spitz F, Constam DB, Trono D. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature. 2010;463(7278):237–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature08674. PMID: 20075919.

    Article  CAS  PubMed  Google Scholar 

  38. de Tribolet-Hardy J, Thorball CW, Forey R, Planet E, Duc J, Coudray A, Khubieh B, Offner S, Pulver C, Fellay J, Imbeault M, Turelli P, Trono D. Genetic features and genomic targets of human KRAB-zinc finger proteins. Genome Res. 2023;33(8):1409–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gr.277722.123. Epub 2023 Sep 20. PMID: 37730438; PMCID: PMC10547255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bruno M, Mahgoub M, Macfarlan TS. The arms race between KRAB–zinc finger proteins and endogenous retroelements and its impact on mammals. Annu Rev Genet. 2019;3(53):393–416. https://doiorg.publicaciones.saludcastillayleon.es/10.1146/annurev-genet-112618-043717. Epub 2019 Sep 13 PMID: 31518518.

    Article  CAS  Google Scholar 

  40. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ 3rd. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev. 1996;10(16):2067–78. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.10.16.2067. PMID: 8769649.

    Article  CAS  PubMed  Google Scholar 

  41. Lechner MS, Begg GE, Speicher DW, Rauscher FJ 3rd. Molecular determinants for targeting heterochromatin protein 1-mediated gene silencing: direct chromoshadow domain-KAP-1 corepressor interaction is essential. Mol Cell Biol. 2000;20(17):6449–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1128/MCB.20.17.6449-6465.2000. PMID:10938122;PMCID:PMC86120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schultz DC, Friedman JR, Rauscher FJ 3rd. Targeting histone deacetylase complexes via KRAB-zinc finger proteins: the PHD and bromodomains of KAP-1 form a cooperative unit that recruits a novel isoform of the Mi-2alpha subunit of NuRD. Genes Dev. 2001;15(4):428–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.869501. PMID:11230151;PMCID:PMC312636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ecco G, Cassano M, Kauzlaric A, Duc J, Coluccio A, Offner S, Imbeault M, Rowe HM, Turelli P, Trono D. Transposable elements and their KRAB-ZFP controllers regulate gene expression in adult tissues. Dev Cell. 2016;36(6):611–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.devcel.2016.02.024. PMID: 27003935; PMCID: PMC4896391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Singh K, Cassano M, Planet E, Sebastian S, Jang SM, Sohi G, Faralli H, Choi J, Youn HD, Dilworth FJ, Trono D. A KAP1 phosphorylation switch controls MyoD function during skeletal muscle differentiation. Genes Dev. 2015;29(5):513–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1101/gad.254532.114. PMID:25737281;PMCID:PMC4358404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. White D, Rafalska-Metcalf IU, Ivanov AV, Corsinotti A, Peng H, Lee SC, Trono D, Janicki SM, Rauscher FJ 3rd. The ATM substrate KAP1 controls DNA repair in heterochromatin: regulation by HP1 proteins and serine 473/824 phosphorylation. Mol Cancer Res. 2012;10(3):401–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1158/1541-7786.MCR-11-0134. Epub 2011 Dec 28. PMID: 22205726; PMCID: PMC4894472.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Hua C, Zhang Y, Wei P, Tu Y, Wei T. KAP1-associated transcriptional inhibitory complex regulates C2C12 myoblasts differentiation and mitochondrial biogenesis via miR-133a repression. Cell Death Dis. 2020;11(9):732. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-020-02937-5. PMID: 32908124; PMCID: PMC7481787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Steinert ND, Potts GK, Wilson GM, Klamen AM, Lin KH, Hermanson JB, McNally RM, Coon JJ, Hornberger TA. Mapping of the contraction-induced phosphoproteome identifies TRIM28 as a significant regulator of skeletal muscle size and function. Cell Rep. 2021;34(9):108796. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.celrep.2021.108796. PMID: 33657380; PMCID: PMC7967290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Steinert ND, Jorgenson KW, Lin KH, Hermanson JB, Lemens JL, Hornberger TA. A novel method for visualizing in-vivo rates of protein degradation provides insight into how TRIM28 regulates muscle size. iScience. 2023;26(4):106526. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.isci.2023.106526. PMID: 37070069; PMCID: PMC10105291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin KH, Hibbert JE, Flynn CG, Lemens JL, Torbey MM, Steinert ND, Flejsierowicz PM, Melka KM, Lindley GT, Lares M, Setaluri V, Wagers AJ, Hornberger TA. Satellite cell-derived TRIM28 is pivotal for mechanical load- and injury-induced myogenesis. EMBO Rep. 2024;25(9):3812–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s44319-024-00227-1. Epub 2024 Aug 14. PMID: 39143258; PMCID: PMC11387408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bi P, Ramirez-Martinez A, Li H, Cannavino J, McAnally JR, Shelton JM, Sánchez-Ortiz E, Bassel-Duby R, Olson EN. Control of muscle formation by the fusogenic micropeptide myomixer. Science. 2017;356(6335):323–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1126/science.aam9361. Epub 2017 Apr 6. PMID: 28386024; PMCID: PMC5502127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Quinn ME, Goh Q, Kurosaka M, Gamage DG, Petrany MJ, Prasad V, Millay DP. Myomerger induces fusion of non-fusogenic cells and is required for skeletal muscle development. Nat Commun. 2017;1(8):15665. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncomms15665. PMID:28569755;PMCID:PMC5461499.

    Article  CAS  Google Scholar 

  52. Zhang Q, Vashisht AA, O’Rourke J, Corbel SY, Moran R, Romero A, Miraglia L, Zhang J, Durrant E, Schmedt C, Sampath SC, Sampath SC. The microprotein minion controls cell fusion and muscle formation. Nat Commun. 2017;8:15664. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncomms15664. PMID: 28569745; PMCID: PMC5461507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Garcia P, Jarassier W, Brun C, Giordani L, Agostini F, Kung WH, Peccate C, Ravent J, Fall S, Petit V, Cheung TH, Ait-Si-Ali S, Le Grand F. Setdb1 protects genome integrity in murine muscle stem cells to allow for regenerative myogenesis and inflammation. Dev Cell. 2024;59(17):2375-2392.e8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.devcel.2024.05.012. Epub 2024 Jun 6 PMID: 38848717.

    Article  CAS  PubMed  Google Scholar 

  54. Lyu Y, Kim SJ, Humphrey ES, Nayak R, Guan Y, Liang Q, Kim KH, Tan Y, Dou J, Sun H, Song X, Nagarajan P, Gerner-Mauro KN, Jin K, Liu V, Hassan RH, Johnson ML, Deliu LP, You Y, Sharma A, Pasolli HA, Lu Y, Zhang J, Mohanty V, Chen K, Yang YJ, Chen T, Ge Y. Stem cell activity-coupled suppression of endogenous retrovirus governs adult tissue regeneration. Cell. 2024;S0092–8674(24):01155–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2024.10.007. Epub ahead of print. PMID: 39476839.

    Article  CAS  Google Scholar 

  55. Hill EW, McGivney BA, Gu J, Whiston R, Machugh DE. A genome-wide SNP-association study confirms a sequence variant (g.66493737C>T) in the equine myostatin (MSTN) gene as the most powerful predictor of optimum racing distance for Thoroughbred racehorses. BMC Genomics. 2010;11:552. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1471-2164-11-552. PMID: 20932346; PMCID: PMC3091701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. O’Hara V, Cowan A, Riddell D, Massey C, Martin J, Piercy RJ. A highly prevalent SINE mutation in the myostatin (MSTN) gene promoter is associated with low circulating myostatin concentration in Thoroughbred racehorses. Sci Rep. 2021;11(1):7916. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-86783-1. PMID: 33846367; PMCID: PMC8041750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Santagostino M, Khoriauli L, Gamba R, Bonuglia M, Klipstein O, Piras FM, Vella F, Russo A, Badiale C, Mazzagatti A, Raimondi E, Nergadze SG, Giulotto E. Genome-wide evolutionary and functional analysis of the equine repetitive element 1: an insertion in the myostatin promoter affects gene expression. BMC Genet. 2015;16:126. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12863-015-0281-1. PMID: 26503543; PMCID: PMC4623272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Petersen JL, Valberg SJ, Mickelson JR, McCue ME. Haplotype diversity in the equine myostatin gene with focus on variants associated with race distance propensity and muscle fiber type proportions. Anim Genet. 2014;45(6):827–35. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/age.12205. Epub 2014 Aug 26. PMID: 25160752; PMCID: PMC4211974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A. 1997;94(23):12457–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.94.23.12457. PMID:9356471;PMCID:PMC24998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/387083a0. PMID: 9139826.

    Article  CAS  PubMed  Google Scholar 

  61. Wang M, Yu H, Kim YS, Bidwell CA, Kuang S. Myostatin facilitates slow and inhibits fast myosin heavy chain expression during myogenic differentiation. Biochem Biophys Res Commun. 2012;426(1):83–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2012.08.040. Epub 2012 Aug 14. PMID: 22910409; PMCID: PMC3483024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dupressoir A, Vernochet C, Harper F, Guégan J, Dessen P, Pierron G, Heidmann T. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc Natl Acad Sci U S A. 2011;108(46):E1164-73. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.1112304108. Epub 2011 Oct 27. PMID: 22032925; PMCID: PMC3219115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Lavialle C, Cornelis G, Dupressoir A, Esnault C, Heidmann O, Vernochet C, Heidmann T. Paleovirology of “syncytins”, retroviral env genes exapted for a role in placentation. Philos Trans R Soc Lond B Biol Sci. 2013;368(1626):20120507. https://doiorg.publicaciones.saludcastillayleon.es/10.1098/rstb.2012.0507. PMID: 23938756; PMCID: PMC3758191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Redelsperger F, Raddi N, Bacquin A, Vernochet C, Mariot V, Gache V, Blanchard-Gutton N, Charrin S, Tiret L, Dumonceaux J, Dupressoir A, Heidmann T. Genetic evidence that captured retroviral envelope syncytins contribute to myoblast fusion and muscle sexual dimorphism in mice. PLoS Genet. 2016;12(9):e1006289. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pgen.1006289. PMID:27589388;PMCID:PMC5010199.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Narita N, Nishio H, Kitoh Y, Ishikawa Y, Ishikawa Y, Minami R, Nakamura H, Matsuo M. Insertion of a 5’ truncated L1 element into the 3’ end of exon 44 of the dystrophin gene resulted in skipping of the exon during splicing in a case of Duchenne muscular dystrophy. J Clin Invest. 1993;91(5):1862–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/JCI116402. PMID: 8387534; PMCID: PMC288178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Holmes S, Dombroski B, Krebs C, et al. A new retrotransposable human L1 element from the LRE2 locus on chromosome 1q produces a chimaeric insertion. Nat Genet. 1994;7:143–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng0694-143.

    Article  CAS  PubMed  Google Scholar 

  67. Solyom S, Ewing AD, Hancks DC, Takeshima Y, Awano H, Matsuo M, Kazazian HH Jr. Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon. Hum Mutat. 2012;33(2):369–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/humu.21663. Epub 2011 Dec 8. PMID: 22095564; PMCID: PMC3258325.

    Article  CAS  PubMed  Google Scholar 

  68. Awano H, Malueka RG, Yagi M, Okizuka Y, Takeshima Y, Matsuo M. Contemporary retrotransposition of a novel non-coding gene induces exon-skipping in dystrophin mRNA. J Hum Genet. 2010;55(12):785–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/jhg.2010.111. Epub 2010 Sep 9 PMID: 20827276.

    Article  CAS  PubMed  Google Scholar 

  69. Smith BF, Yue Y, Woods PR, Kornegay JN, Shin JH, Williams RR, Duan D. An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchenne-like muscular dystrophy in the corgi breed. Lab Invest. 2011;91(2):216–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/labinvest.2010.146. Epub 2010 Aug 16. PMID: 20714321; PMCID: PMC2999660.

    Article  CAS  PubMed  Google Scholar 

  70. Besse S, Allamand V, Vilquin JT, Li Z, Poirier C, Vignier N, Hori H, Guénet JL, Guicheney P. Spontaneous muscular dystrophy caused by a retrotransposal insertion in the mouse laminin alpha2 chain gene. Neuromuscul Disord. 2003;13(3):216–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0960-8966(02)00278-x. PMID: 12609503.

    Article  PubMed  Google Scholar 

  71. Kobayashi K, Nakahori Y, Miyake M, Matsumura K, Kondo-Iida E, Nomura Y, Segawa M, Yoshioka M, Saito K, Osawa M, Hamano K, Sakakihara Y, Nonaka I, Nakagome Y, Kanazawa I, Nakamura Y, Tokunaga K, Toda T. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature. 1998;394(6691):388–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/28653. PMID: 9690476.

    Article  CAS  PubMed  Google Scholar 

  72. Pelé M, Tiret L, Kessler JL, Blot S, Panthier JJ. SINE exonic insertion in the PTPLA gene leads to multiple splicing defects and segregates with the autosomal recessive centronuclear myopathy in dogs. Hum Mol Genet. 2005;14(11):1417–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/hmg/ddi151. Epub 2005 Apr 13. Erratum in: Hum Mol Genet. 2005 Jul 1;14(13):1905-6. PMID: 15829503.

    Article  CAS  PubMed  Google Scholar 

  73. Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292(7):344–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJM197502132920706. PMID: 1090839.

    Article  CAS  PubMed  Google Scholar 

  74. Kamperman RG, van der Kooi AJ, de Visser M, Aronica E, Raaphorst J. Pathophysiological mechanisms and treatment of dermatomyositis and immune mediated necrotizing myopathies: a focused review. Int J Mol Sci. 2022;23(8):4301. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms23084301. PMID: 35457124; PMCID: PMC9030619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mammen AL, Allenbach Y, Stenzel W, Benveniste O; ENMC 239th Workshop Study Group. 239th ENMC International Workshop: Classification of dermatomyositis, Amsterdam, the Netherlands, 14–16 December 2018. Neuromuscul Disord. 2020;30(1):70–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nmd.2019.10.005 . Epub 2019 Oct 25. PMID: 31791867.

  76. Mariampillai K, Granger B, Amelin D, Guiguet M, Hachulla E, Maurier F, Meyer A, Tohmé A, Charuel JL, Musset L, Allenbach Y, Benveniste O. Development of a new classification system for idiopathic inflammatory myopathies based on clinical manifestations and myositis-specific autoantibodies. JAMA Neurol. 2018;75(12):1528–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamaneurol.2018.2598. PMID: 30208379; PMCID: PMC6583199.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Schmidt J. Current classification and management of inflammatory myopathies. J Neuromuscul Dis. 2018;5(2):109–29. https://doiorg.publicaciones.saludcastillayleon.es/10.3233/JND-180308. PMID:29865091;PMCID:PMC6004913.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Gasparotto M, Franco C, Zanatta E, Ghirardello A, Zen M, Iaccarino L, Fabris B, Doria A, Gatto M. The interferon in idiopathic inflammatory myopathies: Different signatures and new therapeutic perspectives. A literature review. Autoimmun Rev. 2023;22(6):103334. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.autrev.2023.103334. Epub 2023 Apr 15. PMID: 37068699.

    Article  CAS  PubMed  Google Scholar 

  79. Pasquesi GIM, Allen H, Ivancevic A, Barbachano-Guerrero A, Joyner O, Guo K, Simpson DM, Gapin K, Horton I, Nguyen LL, Yang Q, Warren CJ, Florea LD, Bitler BG, Santiago ML, Sawyer SL, Chuong EB. Regulation of human interferon signaling by transposon exonization. Cell. 2024;187(26):7621-7636.e19. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cell.2024.11.016. Epub 2024 Dec 12 PMID: 39672162.

    Article  CAS  PubMed  Google Scholar 

  80. Mavragani CP, Sagalovskiy I, Guo Q, Nezos A, Kapsogeorgou EK, Lu P, Liang Zhou J, Kirou KA, Seshan SV, Moutsopoulos HM, Crow MK. Expression of long interspersed nuclear element 1 retroelements and induction of type I interferon in patients with systemic autoimmune disease. Arthritis Rheumatol. 2016;68(11):2686–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/art.39795. PMID: 27338297; PMCID: PMC5083133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuriyama Y, Shimizu A, Kanai S, Oikawa D, Tokunaga F, Tsukagoshi H, Ishikawa O. The synchronized gene expression of retrotransposons and type I interferon in dermatomyositis. J Am Acad Dermatol. 2021;84(4):1103–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jaad.2020.05.051. Epub 2020 May 19. PMID: 32439465; PMCID: PMC7234944.

    Article  CAS  PubMed  Google Scholar 

  82. Kuriyama Y, Shimizu A, Kanai S, Oikawa D, Motegi SI, Tokunaga F, Ishikawa O. Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Sci Rep. 2021;11(1):23146. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-021-02522-6. PMID:34848794;PMCID:PMC8632942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Tunbak H, Enriquez-Gasca R, Tie CHC, Gould PA, Mlcochova P, Gupta RK, Fernandes L, Holt J, van der Veen AG, Giampazolias E, Burns KH, Maillard PV, Rowe HM. The HUSH complex is a gatekeeper of type I interferon through epigenetic regulation of LINE-1s. Nat Commun. 2020N 3;11(1):5387. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41467-020-19170-5. PMID:33144593;PMCID:PMC7609715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Valdebenito-Maturana B, Valdebenito-Maturana F, Carrasco M, Tapia JC, Maureira A. Activation of transposable elements in human skeletal muscle fibers upon statin treatment. Int J Mol Sci. 2022;24(1):244. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms24010244. PMID: 36613689; PMCID: PMC9820482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tihaya MS, Mul K, Balog J, de Greef JC, Tapscott SJ, Tawil R, Statland JM, van der Maarel SM. Facioscapulohumeral muscular dystrophy: the road to targeted therapies. Nat Rev Neurol. 2023;19(2):91–108. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41582-022-00762-2. Epub 2023 Jan 10. PMID: 36627512; PMCID: PMC11578282.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Hewitt JE, Lyle R, Clark LN, Valleley EM, Wright TJ, Wijmenga C, van Deutekom JC, Francis F, Sharpe PT, Hofker M, et al. Analysis of the tandem repeat locus D4Z4 associated with facioscapulohumeral muscular dystrophy. Hum Mol Genet. 1994;3(8):1287–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/hmg/3.8.1287. PMID: 7987304.

    Article  CAS  PubMed  Google Scholar 

  87. Gabriëls J, et al. Nucleotide sequence of the partially deleted D4Z4 locus in a patient with FSHD identifies a putative gene within each 3.3 kb element. Gene. 1999;236(1):25–32.

    Article  PubMed  Google Scholar 

  88. Clapp J, Mitchell LM, Bolland DJ, Fantes J, Corcoran AE, Scotting PJ, Armour JA, Hewitt JE. Evolutionary conservation of a coding function for D4Z4, the tandem DNA repeat mutated in facioscapulohumeral muscular dystrophy. Am J Hum Genet. 2007;81(2):264–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1086/519311. Epub 2007 Jun 27. PMID: 17668377; PMCID: PMC1950813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. De Iaco A, Planet E, Coluccio A, Verp S, Duc J, Trono D. DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nat Genet. 2017;49(6):941–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.3858. Epub 2017 May 1. PMID: 28459456; PMCID: PMC5446900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Hendrickson PG, Doráis JA, Grow EJ, Whiddon JL, Lim JW, Wike CL, Weaver BD, Pflueger C, Emery BR, Wilcox AL, Nix DA, Peterson CM, Tapscott SJ, Carrell DT, Cairns BR. Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nat Genet. 2017;49(6):925–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ng.3844. Epub 2017 May 1. PMID: 28459457; PMCID: PMC5703070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Sacconi S, Briand-Suleau A, Gros M, Baudoin C, Lemmers RJLF, Rondeau S, Lagha N, Nigumann P, Cambieri C, Puma A, Chapon F, Stojkovic T, Vial C, Bouhour F, Cao M, Pegoraro E, Petiot P, Behin A, Marc B, Eymard B, Echaniz-Laguna A, Laforet P, Salviati L, Jeanpierre M, Cristofari G, van der Maarel SM. FSHD1 and FSHD2 form a disease continuum. Neurology. 2019;92(19):e2273–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/WNL.0000000000007456. Epub 2019 Apr 12. PMID: 30979860; PMCID: PMC6537132.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Snider L, Asawachaicharn A, Tyler AE, Geng LN, Petek LM, Maves L, Miller DG, Lemmers RJ, Winokur ST, Tawil R, van der Maarel SM, Filippova GN, Tapscott SJ. RNA transcripts, miRNA-sized fragments and proteins produced from D4Z4 units: new candidates for the pathophysiology of facioscapulohumeral dystrophy. Hum Mol Genet. 2009;18(13):2414–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/hmg/ddp180. Epub 2009 Apr 9. PMID: 19359275; PMCID: PMC2694690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Snider L, Geng LN, Lemmers RJ, Kyba M, Ware CB, Nelson AM, Tawil R, Filippova GN, van der Maarel SM, Tapscott SJ, Miller DG. Facioscapulohumeral dystrophy: incomplete suppression of a retrotransposed gene. PLoS Genet. 2010;6(10):e1001181. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pgen.1001181. PMID: 21060811; PMCID: PMC2965761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Geng LN, Yao Z, Snider L, Fong AP, Cech JN, Young JM, van der Maarel SM, Ruzzo WL, Gentleman RC, Tawil R, Tapscott SJ. DUX4 activates germline genes, retroelements, and immune mediators: implications for facioscapulohumeral dystrophy. Dev Cell. 2012;22(1):38–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.devcel.2011.11.013. Epub 2011 Dec 29. PMID: 22209328; PMCID: PMC3264808.

    Article  CAS  PubMed  Google Scholar 

  95. Kowaljow V, Marcowycz A, Ansseau E, Conde CB, Sauvage S, Mattéotti C, Arias C, Corona ED, Nuñez NG, Leo O, Wattiez R, Figlewicz D, Laoudj-Chenivesse D, Belayew A, Coppée F, Rosa AL. The DUX4 gene at the FSHD1A locus encodes a pro-apoptotic protein. Neuromuscul Disord. 2007;17(8):611–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nmd.2007.04.002. Epub 2007 Jun 27 PMID: 17588759.

    Article  PubMed  Google Scholar 

  96. Young JM, Whiddon JL, Yao Z, Kasinathan B, Snider L, Geng LN, Balog J, Tawil R, van der Maarel SM, Tapscott SJ. DUX4 binding to retroelements creates promoters that are active in FSHD muscle and testis. PLoS Genet. 2013;9(11):e1003947. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pgen.1003947. Epub 2013 Nov 21. PMID: 24278031; PMCID: PMC3836709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Mitsuhashi S, Nakagawa S, Sasaki-Honda M, Sakurai H, Frith MC, Mitsuhashi H. Nanopore direct RNA sequencing detects DUX4-activated repeats and isoforms in human muscle cells. Hum Mol Genet. 2021;30(7):552–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/hmg/ddab063. PMID: 33693705; PMCID: PMC8120133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. De Cecco M, Criscione SW, Peterson AL, Neretti N, Sedivy JM, Kreiling JA. Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging (Albany NY). 2013;5(12):867–83. https://doiorg.publicaciones.saludcastillayleon.es/10.18632/aging.100621. PMID: 24323947; PMCID: PMC3883704.

    Article  PubMed  Google Scholar 

  99. Mumford PW, Romero MA, Osburn SC, Roberson PA, Vann CG, Mobley CB, Brown MD, Kavazis AN, Young KC, Roberts MD. Skeletal muscle LINE-1 retrotransposon activity is upregulated in older versus younger rats. Am J Physiol Regul Integr Comp Physiol. 2019;317(3):R397–406. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpregu.00110.2019. Epub 2019 Jun 12 PMID: 31188650.

    Article  CAS  PubMed  Google Scholar 

  100. Min B, Jeon K, Park JS, Kang YK. Demethylation and derepression of genomic retroelements in the skeletal muscles of aged mice. Aging Cell. 2019;18(6):e13042. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/acel.13042. Epub 2019 Sep 27. PMID: 31560164; PMCID: PMC6826136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, De Cecco M, Leonova KI, Kogan V, Helfand SL, Neretti N, Roichman A, Cohen HY, Meer MV, Gladyshev VN, Antoch MP, Gudkov AV, Sedivy JM, Seluanov A, Gorbunova V. LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab. 2019;29(4):871-885.e5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cmet.2019.02.014. Epub 2019 Mar 7. PMID: 30853213; PMCID: PMC6449196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Roberson PA, Romero MA, Osburn SC, Mumford PW, Vann CG, Fox CD, McCullough DJ, Brown MD, Roberts MD. Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity. J Appl Physiol (1985). 2019;127(4):895–904. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/japplphysiol.00352.2019. Epub 2019 Aug 1. PMID: 31369326.

    Article  CAS  PubMed  Google Scholar 

  103. Romero MA, Mobley CB, Mumford PW, Roberson PA, Haun CT, Kephart WC, Healy JC, Beck DT, Young KC, Martin JS, Lockwood CM, Roberts MD. Acute and chronic resistance training downregulates select LINE-1 retrotransposon activity markers in human skeletal muscle. Am J Physiol Cell Physiol. 2018;314(3):C379–88. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpcell.00192.2017. Epub 2017 Dec 20 PMID: 29351416.

    Article  CAS  PubMed  Google Scholar 

  104. Romero MA, Mumford PW, Roberson PA, Osburn SC, Parry HA, Kavazis AN, Gladden LB, Schwartz TS, Baker BA, Toedebusch RG, Childs TE, Booth FW, Roberts MD. Five months of voluntary wheel running downregulates skeletal muscle LINE-1 gene expression in rats. Am J Physiol Cell Physiol. 2019;317(6):C1313–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpcell.00301.2019. Epub 2019 Oct 16. PMID: 31618076; PMCID: PMC7745540.

    Article  CAS  PubMed  Google Scholar 

  105. Romero MA, Mumford PW, Roberson PA, Osburn SC, Young KC, Sedivy JM, Roberts MD. Translational significance of the LINE-1 jumping gene in skeletal muscle. Exerc Sport Sci Rev. 2022;50(4):185–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1249/JES.0000000000000301. Epub 2022 Jun 24. PMID: 35749745; PMCID: PMC9651911.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol. 2001;3(11):1014–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ncb1101-1014. PMID: 11715023.

    Article  CAS  PubMed  Google Scholar 

  107. Machida S, Spangenburg EE, Booth FW. Forkhead transcription factor FoxO1 transduces insulin-like growth factor’s signal to p27Kip1 in primary skeletal muscle satellite cells. J Cell Physiol. 2003;196(3):523–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcp.10339. PMID: 12891709.

    Article  CAS  PubMed  Google Scholar 

  108. Lucchinetti E, Feng J, Silva Rd, Tolstonog GV, Schaub MC, Schumann GG, Zaugg M. Inhibition of LINE-1 expression in the heart decreases ischemic damage by activation of Akt/PKB signaling. Physiol Genomics. 2006;25(2):314–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/physiolgenomics.00251.2005. Epub 2006 Jan 17. PMID: 16418318.

    Article  CAS  PubMed  Google Scholar 

  109. Morais LV, Dos Santos SN, Gomes TH, Malta Romano C, Colombo-Souza P, Amaral JB, Shio MT, Neves LM, Bachi ALL, França CN, Nali LHDS. Acute strength exercise training impacts differently the HERV-W expression and inflammatory biomarkers in resistance exercise training individuals. PLoS One. 2024;19(5):e0303798. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0303798. PMID: 38753716; PMCID: PMC11098355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Nathalie Didier for helpful comments on the manuscript. Figures were generated using Biorender.

Funding

Work in the Relaix lab is supported by the “Association Française contre les Myopathies” (AFM) via TRANSLAMUSCLE II program (project 22946).

Author information

Authors and Affiliations

Authors

Contributions

MB, LZ and FR all contributed to the writing of the manuscript, and have all read and approved the final manuscript.

Corresponding authors

Correspondence to Matthew J. Borok or Frederic Relaix.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borok, M.J., Zaidan, L. & Relaix, F. Transposon expression and repression in skeletal muscle. Mobile DNA 16, 18 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13100-025-00352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13100-025-00352-1

Keywords