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Abstract 

Background Interspersed repeats occupy a large part of many eukaryotic genomes, and thus their accurate anno-
tation is essential for various genome analyses. Database-free de novo repeat detection approaches are powerful 
for annotating genomes that lack well-curated repeat databases. However, existing tools do not yet have sufficient 
repeat detection performance.

Results In this study, we developed REPrise, a de novo interspersed repeat detection software program based 
on a seed-and-extension method. Although the algorithm of REPrise is similar to that of RepeatScout, which is cur-
rently the de facto standard tool, we incorporated three unique techniques into REPrise: inexact seeding, affine gap 
scoring and loose masking. Analyses of rice and simulation genome datasets showed that REPrise outperformed 
RepeatScout in terms of sensitivity, especially when the repeat sequences contained many mutations. Furthermore, 
when applied to the complete human genome dataset T2T-CHM13, REPrise demonstrated the potential to detect 
novel repeat sequence families.

Conclusion REPrise can detect interspersed repeats with high sensitivity even in long genomes. Our software 
enhances repeat annotation in diverse genomic studies, contributing to a deeper understanding of genomic 
structures.

Keywords De novo repeat detection, Seed-and-extend, Inexact seed, REPrise

Introduction
Interspersed repeats, which are mainly amplified by cop-
ying of transposable elements (TEs) while undergoing 
evolutionary mutations, constitute a significant portion 
of many eukaryotic genomes. For example, they account 
for 54% of the human genome [1] and 85% of the wheat 
genome [2]. These repeat sequences were once consid-
ered functionless ’junk’ regions, but they are now under-
stood to play various roles in cellular processes, including 
RNA processing and transcriptional regulation [3–5]. 
Moreover, because these repeat sequences contain phylo-
genetic signals, they are employed as markers for recon-
structing species trees [6]. Consequently, the accurate 
annotation of interspersed repeats is an essential task of 
genome analysis.

There are three main computational approaches for 
identifying interspersed repeats: database-dependent, 
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signature-based and de novo database-free methods [7]. 
Database-dependent methods annotate the repeats by 
aligning sequences from repeat databases, such as Rep-
base [8] and Dfam [9], to the genome. The representa-
tive tool for this approach is RepeatMasker [10], which 
is widely used for annotating repeats in newly sequenced 
genomes [1]. However, this approach inherently faces 
challenges in annotating genomes without well-curated 
repeat databases and in detecting repeats absent from 
existing databases. Signature-based methods search 
repeat sequences for specific classes based on particu-
lar sequence motifs and structures. The representative 
tools are LTR_FINDER [11], which detects Long Termi-
nal Repeat (LTR) retrotransposons based on the specific 
repeat structure, and TSDFINDER [12], which targets 
target site duplication sequences of non-LTR retrotrans-
posons. These methods can detect novel interspersed 
repeats of classes that possess the target structures. How-
ever, they cannot detect interspersed repeats that do not 
have the target structures or whose structure has not 
been conserved due to the mutation, fragmentation, or 
nesting.

Recent advances in sequencing technology have led 
to numerous cases that cannot be adequately handled 
by this database-dependent approach alone. For exam-
ple, the Earth BioGenome Project [13], which aims to 
sequence all eukaryotic genomes by 2030, continues 
to sequence the genomes of many non-model organ-
isms that lack sufficient repeat annotation. As another 
example, the Telomere-to-Telomere (T2T) Consortium 
has released a complete human genome using long read 
sequencers and has discovered novel repeat families in 
newly sequenced regions [1, 14].

In these cases, de novo database-free methods are 
practical for detecting interspersed repeats. At pre-
sent, various tools based on this approach have been 
developed [15–20], and benchmark studies have indi-
cated that RepeatScout [21] is the best-performing tool 
[22–24]. RepeatScout employs a seed-and-extension 
method, originally proposed as a fast alignment heu-
ristic in BLAST [25]. RepeatScout first identifies fre-
quently occurring seed regions within the genome and 
then performs extension alignments from both ends of 
these seed regions. Once the extension alignment is com-
pleted, the corresponding seed regions are masked, and 
the extension alignment is performed again from dif-
ferent seed regions. This cycle of alignment and mask-
ing continues until alignments from all seed regions 
have been performed. Because of its high repeat detec-
tion performance, RepeatScout has been incorporated 
into comprehensive repeat annotation pipelines such 
as EDTA [23] and RepeatModeler2 [26]. However, even 
RepeatScout has yet to achieve perfect repeat detection, 

indicating that there is room for further improvement in 
the algorithm. In addition, due to implementation issues, 
RepeatScout cannot be applied directly to long genome 
sequences such as the human genome.

In this study, we developed REPrise (REPeat Recog-
nition using Inexact Seed-and-Extension), a tool that 
identifies interspersed repeats de novo with higher sen-
sitivity than RepeatScout. The algorithm of REPrise 
is organized into three main steps similar to those in 
RepeatScout: seed detection, extension alignment, and 
masking. REPrise improved each of these steps compared 
to RepeatScout as follows. 

1. Unlike RepeatScout, which used exact k-mer matches 
as seed sequences, REPrise employed inexact seeds 
that allow for d mismatches. Because some highly 
sensitive sequence alignment tools utilized seeding 
that is not exact matches [27], we expected that the 
inexact seeding improves the detection sensitivity of 
interspersed repeats. Note that phRAIDER [19] used 
seeding that is not exact matches for interspersed 
repeat detection, but phRAIDER is limited in the 
detectable repeat types.

2. For the indel score in the extension alignment, 
RepeatScout employed a linear gap penalty, whereas 
REPrise used an affine gap penalty [28], which is a 
more commonly used scoring system for sequence 
alignments.

3. In the masking step, RepeatScout masked all seeds 
within the identified repeats, whereas REPrise only 
masked the seed used for repeat detection. In other 
words, REPrise reduces the number of regions being 
masked, preserving more candidate regions for sub-
sequent repeat detection.

In addition, we implemented REPrise to be applicable 
to long genome sequences. Our validation experiments 
showed that REPrise outperformed RepeatScout in the 
detection sensitivity of interspersed repeats using both 
rice and simulation genome datasets. We also applied 
REPrise to the complete human genome T2T-CHM13 
and identified novel TE family candidates that have not 
yet been annotated.

Methods
Overview of the REPrise algorithm
Both REPrise and RepeatScout take genome sequences 
as input and output consensus sequences for each identi-
fied repeat families. The consensus sequence is a string 
composed of four characters A, T, C, G. Figure 1 provides 
an overview of the REPrise and RepeatScout algorithms. 
Both algorithms first construct a seed table composed 
of seed sequences with their frequencies in the input 
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genome. As the seed sequences, RepeatScout uses k-mers 
that occur more than c times in the genome without 
allowing substitutions. In contrast, REPrise allows for d 
substitutions. In accordance with a previous benchmark 
study [23], we set the value of c to 10. In the next step, the 
extension alignment is performed on the most frequent 
seeds in the seed table. Each alignment result from one 
seed sequence corresponds to one repeat family. While 
RepeatScout employs linear gap scoring, REPrise uses aff-
ine gap scoring. After the alignment, the genome regions 
corresponding to these seed sequences are masked, and 
the masked seeds are also removed from the seed table. 
REPrise adopts a masking approach that only masks the 
seed used for repeat detection, resulting in fewer masked 
regions compared to RepeatScout. Then, the selection 
of the most frequently occurring seed and the extension 
alignment is performed again. This cycle of the seed-and-
extension and masking is repeated until no more seeds 
are left in the seed table. Finally, REPrise further merges 

the consensus sequences of the identified repeat families 
using CD-HIT [29].

Construction of the seed table
While RepeatScout constructs the seed table by scan-
ning the genome only once, REPrise cannot adopt this 
approach because it employs inexact seeding. In addi-
tion, REPrise has to ensure that a k-mer is not counted 
multiple times from different seeds. To address these 
issues, REPrise uses a suffix array to index the genome 
sequence T. The suffix array is a data structure that lists 
starting positions of all suffixes of a given string in the 
lexicographical order. It can be constructed with the time 
complexity of O(|T|) using the induced sorting algorithm 
[30] and is frequently used in bioinformatics sequence 
analysis software [31]. By performing a binary search 
on the suffix array, for a given k-mer, we can count the 
frequencies of all d-similar k-mers in the genome. We 
defined two k-mers whose Hamming distance is less than 
or equal to d as d-similar k-mers.

REPrise constructs the seed table in the following 
manner: 

1. The suffix array of the genome sequence is con-
structed.

2. For each k-mer seed, REPrise counts the frequencies 
of all d-similar k-mers in the genome. The count is 
recorded as the frequency for each k-mer seed. In 
this step, REPrise allows that a k-mer is counted mul-
tiple times from different seeds. To accelerate this 
process, we employed parallel computation using 
multi-threading with OpenMP.

3. The k-mer seeds are sorted based on their frequen-
cies.

4. In this sorted order, REPrise recounts the frequencies 
of all d-similar k-mers in the genome for each k-mer 
seed. In this recount step, REPrise does not count k-
mer once counted again and thus can avoid multiple 
counts of the same k-mer from different k-mer seeds. 
Finally, only the seeds with a frequency of c or higher 
are retained in the seed table.

Seed‑and‑Extension alignment with affine gap scoring
The extension step of REPrise uses the banded align-
ment with affine gap scoring. The alignment procedure 
between two sequences is detailed in the Supplementary 
Material (Section S1). The consensus sequence Q among 
repeats is obtained by extending sequences from the 
seed region using the banded alignment. As the example, 
we introduce the rightward extension algorithm. Let Qt 
denote the consensus sequence exteneded by t nucleo-
tides to the right from the seed region. Given that the 

Fig. 1 The schematic illustration of REPrise and RepeatScout 
algorithms. These algorithms first construct a seed table 
from the input genome sequences. REPrise utilizes inexact 
seeds, frequently appearing k-mers permitting d substitutions, 
for the table construction. Subsequently, these algorithms perform 
seed-and-extension alignments on both ends of the seeds. REPrise 
adopts the affine gap scoring in this step. These algorithms then 
mask seed regions in the detected repeat regions. REPrise performs 
looser seed masking than RepeatScout. This cycle of alignment 
and masking is repeated until the seed table is depleted. In REPrise, 
representative sequences are selected from the consensus sequences 
of repeat families using CD-HIT and the representative sequences are 
outputted
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seed sequence is located at M positions in the genome, 
and the M sequences adjacent to the right of the seed 
region are defined as S1, S2, . . . , SM . The extension of the 
consensus sequence from Qt to Qt+1 is performed accord-
ing to the following equation:

where · is an operator that appends a character to the 
right end of a sequence, A(X; S1, . . . , SM) is summa-
tion of the alignment score between X and each Sm , and 
aX ,Sm(i, j) is the alignment score between between the 
first i characters of X and the first j characters of Sm . 
The first term of A indicates that X aligns with Sm up to 
the end of X. The second term of A implys that X aligns 
only up to the middle of Sm . p is an incomplete-fit pen-
alty, which is set to −20, consistent with the value used in 
RepeatScout. The third term of A represents that X and 
Sm are not aligned at all.

The extension of Qt is halted when tmax is not updated 
over a predefined length w. tmax is updated to t when the 
following conditions are satisfied:

where r represents the penalty associated with the num-
ber of regions to be extended as the repeat regions in the 
genome and is set to three as with RepeatScout. When 
the extention is terminated, Qtmax is concatenated to the 
right side of the seed sequence. In this study, w is set to 
100 as with RepeatScout. The same extension process is 
performed to the left direction, and the final consensus 
sequence Q is obtained. As the left and right extensions 
are independent processes, they were computed in paral-
lel by multi-threading with OpenMP.

Loose masking
Masking is a step to remove seed regions once used for 
repeat detection from the subsequent analysis, avoid-
ing redundancy in repeat detection and reducing the 
computation time. Specifically, the consensus sequence 
obtained in the extension step is realigned to the regions 
around the seed, and the seed sequences in the alignment 
regions are removed from the seed table (Supplementary 
Figure S1).

RepeatScout performs the realignment for all seed 
sequences within the consensus sequence. This approach 
effectively reduces redundancy of repeat detection. How-
ever, because the realignment is conducted even for seeds 
not used for repeat detection, the sensitivity of detecting 
different repeat families that share the same seed may 

Qt+1 = Qt · argmax
N∈{A,T ,G,C}

A(Qt · N ; S1, . . . , SM),

A(X; S1, . . . , SM) =

M

m=1

max

maxj(aX ,Sm (|X |, j))

max1≤i<|X |,j(aX ,Sm (i, j)+ p)

0

A(Qt ; S1, . . . , SM) ≥ A(Qtmax ; S1, . . . , SM)+ r(t − tmax),

be reduced. Therefore, REPrise adopts a loose masking 
approach, which targets only the seeds used for repeat 
detection. Unlike masking in RepeatScout, this masking 
approach prevents the loss of sensitivity from inappropri-
ate masking but introduces high redundancy among the 
detected repeat families. To mitigate this redundancy, 
REPrise performs CD-HIT on the identified repeat fami-
lies after detecting all repeat families. According to the 
Wicker’s 80/80/80 rule for repeat detection [32], we set 
the similarity threshold for CD-HIT at 80%.

Datasets and evaluation measures
We assessed the performance of REPrise using three 
genome datasets with curated repeat annotation: the 
rice, the simulation, and the complete human genome 
datasets. The first rice genome dataset [33] contains a 
manually curated repeat annotation generated using soft-
ware tools such as RECON [15] and serves as a standard 
benchmark for performance validation of repeat annota-
tion software [23]. The second simulation genome data-
set was created using an existing TE insertion simulator 
that randomly incorporates sequences from a TE library 
into a long random sequence multiple times [24]. Muta-
tions were introduced at varying rates, ranging from 5 
mutations per 100 bases (a 5% mutation rate) to 45 muta-
tions per 100 bases (a 45% mutation rate), depending on 
the simulation parameters. We also adjusted the ratio 
of substitutions to indels for the mutation as follows: 
100:0, 80:20 and 60:40. We used a default TE library con-
sisting of 20 TE families and inserted the TE sequences 
into a random sequence of 0.6 million nucleotides. This 
resulted in a sequence of approximately 4.6 million 
nucleotides for each parameter setting. The third dataset 
is complete human genome dataset is the T2T-CHM13 
v2.0 [14] genome with the repeat annotation [1]. We used 
the thickStart and thickEnd columns in the BED file for 
the repeat annotation. We also masked tandem repeats 
using TANTAN [34]. Note that we did not mask tandem 
repeats in the rice genome dataset as the previous bench-
mark study did not use the masking tools.

We applied RepeatScout and REPrise to these genome 
datasets and identified the repeat families. Subsequently, 
we annotated the locations of the repeats within the 
genome using RepeatMasker and the identified repeat 
families. We then evaluated the performance of each soft-
ware by comparing the software outputs with the curated 
annotation (Supplementary Figure S2(A)). We evaluated 
the overlap between the annotation and the software out-
put at the nucleotide level and categorized the genomic 
regions into four groups: true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) (Sup-
plementary Figure S2(B)). From these categories, we 
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calculated four evaluation measures: sensitivity, specific-
ity, precision, and F-score.

Due to fragmented detection or low similarity among 
TE sequences, de-novo generated TE libraries may dif-
fer from the reference ones. To evaluate this, we directly 
compared the consensus sequences between the de novo 
generated TE library and the reference TE library by the 
method described in RepeatModeler2 paper (https:// 
github. com/ jmf422/ TE_ annot ation) [26]. In addition to 
the overall comparison, we performed comparisons for 
each TE class. Each consensus in the reference library 
was classified into one of four categories: Perfect, Good, 
Present, or Not found, and the proportions of each 
category were examined. “Perfect” indicates that one 
sequence in the de novo generated library matches 95% 
in similarity and coverage to a consensus sequence in the 
reference library. “Good” refers to cases where multiple 
overlapping sequences in the de novo generated library, 
each with 95% similarity and total coverage. “Present” 
indicates that one or more sequences in the de-novo-gen-
erated library, with 80% similarity and and coverage.

We also used the complete human genome dataset to 
discover novel interspersed repeat family candidates. 
We first mapped the detected repeat families by REPrise 
to the complete human genome using RepeatMasker. 
We then defined genome regions that met the following 
two criteria as novel repeat regions: (i) no overlap with 
tandem repeats, centromere satellites [35], or segmen-
tal duplications [36], and (ii) less than 20% overlap with 
genes [37] or known repeat regions. For each repeat fam-
ily, if 40% or more of the mapped regions were classified 
as novel repeat regions, we labeled the repeat family as a 
novel repeat family. We further validated the novel repeat 
family regions using the UCSC Genome Browser. When 
necessary, we retrieved transposon protein sequences 
from repeatmasker.org[10] and aligned them to the novel 
repeat regions using LAST [38]. We also performed phy-
logenetic analysis by aligning repeat region sequences 
with MAFFT version 7 [39], trimming the alignments 
with TrimAl [40], and constructing phylogenetic trees 
with IQ-TREE2 [41] when required.

Results
Evaluation in the rice genome dataset
We first explored the influence of seed length k on the 
repeat detection performance using the rice genome 
dataset. We set the gap open score as o = 5 , the band-
width as b = 5 , and the gap extension score as e = 1 
in this analysis. Supplementary Figure S3 shows the 
dependence of the detection performance on k of Repeat-
Scout and REPrise with varying numbers of allowed mis-
matches d. We found that the detection performance was 
highly dependent on k and the optimal k also depended 

on d. These findings underscore the importance of select-
ing appropriate k when using RepeatScout and REPrise. 
In this study, we selected the k with the highest sensi-
tivity. Specifically, for the rice genome dataset analysis, 
we employed k = 15 for RepeatScout and REPrise with 
d = 0 , k = 21 for REPrise with d = 1 , and k = 25 for 
REPrise with d = 2 . Furthermore, we assessed the effect 
of b and e on the detection performance (Supplementary 
Figure S4). We fixed o = 5 in this analysis. We found that 
b does not substantially affect the performance, and thus 
we set b = 5 because smaller b should speed up the com-
putations. Moreover, we set e = 1 because this value was 
the best in all e when b = 5.

Additionally, we investigated the dependence on the 
clustering programs using the rice genome dataset. We 
compared three clustering programs: CD-HIT, mesh-
clust [42], and uclust [43]. The results showed that the 
number of clusters of CD-HIT was closest to 2431, the 
annotated number of families by Ou et al. (version 6.9.5.), 
and CD-HIT achieved the highest F1-score (Supplemen-
tary Table S1). Therefore, we used CD-HIT for clustering 
repeats.

We next compared the repeat detection performance of 
RepeatScout and REPrise (Table 1). Our results showed 
that REPrise demonstrated significantly improved sensi-
tivity compared to RepeatScout, particularly with d = 2 , 
where the sensitivity increased from 89.62% (RepeatS-
cout) to 94.08% (REPrise). Furthermore, REPrise out-
performed RepeatScout even when employing the exact 
seed ( d = 0 ). Since the improvement from the affine gap 
scoring was minor in this analysis(Supplementary Figure 
S4), the loose masking likely played a significant role in 
enhancing the performance. In addition, when evalu-
ating the impact of d on the performance, the sensitiv-
ity increased with a rise in d, indicating that a larger d is 
advantageous for detecting novel repeats.

These results suggest that the loose masking approach of 
REPrise likely contributed significantly to the substantial 

Table 1 Software performance for the rice genome dataset

The bold values are the highest scores among the software. “Mem” represents 
the amount of memory used. Note that RepeatScout is a single-threaded 
computation, whereas REPrise is a 16 multi-threaded computation

Time[h:m:s] Mem[GB] Sensitivity Specifiity F‑score

REPrise 
( d = 0)

0:49:12 8.67 93.40 93.72 93.18

REPrise 
( d = 1)

1:42:55 14.49 93.51 93.46 93.10

REPrise 
( d = 2)

35:17:53 14.20 94.08 92.66 92.98

RepeatS-
cout

0:52:17 5.49 89.62 95.82 92.23

https://github.com/jmf422/TE_annotation
https://github.com/jmf422/TE_annotation
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enhancement in sensitivity. The comparison of REPrise 
with different d values suggests that inexact seeding also 
contributes to some degree of sensitivity improvement. 
The impact of affine gap scoring, though modest, still con-
tributes positively to the overall sensitivity

Note that the manually curated annotation of the rice 
genome has limitations, and that the repeat regions 
labeled as the False Positive by REPrise are potentially 
unknown interspersed repeat regions. Therefore, even if 
the specificity is low, REPrise’s ability to recognize non-
repeat sequences should not be underestimated.

We also assessed the detection sensitivity across dif-
ferent repeat classes (Supplementary Table  S2). Our 
results showed that REPrise consistently outperformed 
RepeatScout for all repeat classes. In addition, the detec-
tion sensitivity of REPrise improved for all repeat classes 
as d increased. In particular, the performance largely 
improved for non-LTR elements, which were difficult to 
detect sensitively due to their high variability [23].

The results of the direct comparison of the consensus 
sequences between the de novo generated TE library and 
the reference TE library are shown in Supplementary Fig-
ure S6. REPrise outperformed RepeatScout in detecting 
sequences present in the reference library. When ana-
lyzed by class, REPrise demonstrated superior perfor-
mance, particularly for non-LTR repeats, as well as DNA 
transposons such as TIRs (Terminal Inverted Repeats) 
and Helitrons. However, REPrise with d = 2 failed to 
detect some repeats as “Perfect”, suggesting that repeat 
sequences were identified in fragmented forms.

We finally evaluated the program runtimes (Table 1). The 
computations were performed on an Intel Xeon Gold 6130 
(16 cores) 2.1GHz CPU with 192 GB of memory. Note that 
REPrise was multi-threaded during both the seed table con-
struction and extension steps, utilizing 16 and two threads, 
respectively. Even when using the same exact seeding 
method, REPrise with d = 0 is expected to take longer than 

RepeatScout because REPrise used the suffix array instead 
of the hash table to construct the seed table. However, their 
computational speeds were comparable, indicating that the 
parallelization by multi-threading in REPrise efficiently con-
tributes to the speed-up. In addition, the runtimes increased 
as d increased, with d = 2 taking roughly 42 times longer 
than d = 0 . We also analyzed how varying the number of 
threads influenced the runtime in REPrise (Supplementary 
Figure S5). We verified that increasing the numer of threads 
to 16 reduced the runtime, but there was no significant 
change in the runtime beyond 16 threads.

Evaluation in the simulation genome dataset
We next investigated the effects of the different levels of 
similarity among repeat sequences on the detection per-
formance using the simulation datasets. We first com-
pared the detection performance for various k values. 
Then, we selected k values as 13 for RepeatScout, and 13, 
15, and 18 for REPrise with d values of 0, 1, and 2, respec-
tively (Supplementary Figure S7).

Figure  2 and Supplementary Figure S8 showed evalu-
ation results for the simulation genome dataset. We 
verified that RepeatScout and REPrise had similar per-
formance when the mutation rate was low, i.e. when 
the sequence similarity was high. Conversely, when the 
mutation rate increased to 30%, REPrise demonstrated 
enhanced performance with a larger d. This result sug-
gests that the inexact seeding was effective in detecting 
repeats that contain many mutations. Furthermore, when 
mutations were predominantly substitutions, there was 
no performance difference between REPrise ( d = 0 ) and 
RepeatScout. However, when the majority of the muta-
tions were indels, REPrise ( d = 0 ) showed better perfor-
mance than RepeatScout. This result indicates that the 
affine gap scoring and the loose masking improved the 
detection of repeats abundant in indels.

Fig. 2 Dependence of the detection sensitivity of RepeatScout and REPrise on the Mutation rate in the simulation genome dataset. The ratios 
of substitutions to indels were A 100:0, B 80:20, and C 60:40. The gray, black, blue, and orange lines represent RepeatScout, REPrise ( d = 0, 1, 2 ), 
respectively. The x- and y-axes represent the mutation rate and the sensitivity, respectively



Page 7 of 11Takeda et al. Mobile DNA           (2025) 16:16  

We also found that the detection performance of these 
programs decreased with increasing substitution rates 
to indels when the mutation rate was high. This may be 
because the high substitution rate to indels prevented 
sharing of seed sequences among repeats in the same 
repeat family. Conversely, when the substitution rate to 
indels was lower, shared seed sequences among repeats 
in the same repeat family are likely to be retained. How-
ever, the low substitution rates (high indel rates) had a 
drawback that the number of repeat families was overes-
timated, because the indels fragment a single repeat fam-
ily into multiple distinct repeat families (Supplementary 
Figure S8).

In all simulation datasets, the number of identified 
families increased as the mutation rate increased, likely 
resulting from the fragmentation of detected repeat 
sequences. However, when the mutation rate was set 
extremely high, there was a noticeable decrease in the 
number of identified families, likely due to the reduced 
detection accuracy.

Analysis of the complete human genome dataset
We then applied REPrise to the complete human genome 
dataset. We selected 17, 21, and 23 as k for REPrise 
with d = 0 , 1, and 2, respectively, after evaluating the 
detection performance among different k values (Sup-
plementary Figure S9). Note that we could not employ 
RepeatScout for the human genome analysis because 
RepeatScout does not support application to long 
genomes. We validated that REPrise with d = 2 sur-
passed REPrise with d = 0 and d = 1 for all evaluation 
measures (Table 2).

We also explored the capability to identify novel repeat 
families for REPrise with d = 2 . Consequently, we iden-
tified 17 novel repeat families (Supplementary Table S3). 
The novel repeat family with the highest proportion of 
novel repeat regions was novel_repeat_family-1 (NRF-
1), where 100% of the repeat regions were novel. Upon 
investigation of these repeat regions, we found that they 

were located immediately upstream of each gene of the 
KRTAP9 gene family on chromosome 17 (Supplemen-
tary Figure S10). This result suggests that these repeat 
regions may be promoter regions that were duplicated 
during gene duplication in the KRTAP9 gene family. 
The novel repeat family with the second-highest pro-
portion of novel repeat regions was NRF-2, with 71% of 
the 35 regions being novel. The majority of these regions 
were located on the Y chromosome, and parts of them 
were present in the long repetitive genomic regions 
newly identified by T2T-CHM13 (Supplementary Fig-
ure S11(A)). Given the abundance of tandem repeats on 
the Y chromosome, these regions may be part of tandem 
repeats, but they were not detected by existing tandem 
repeat detection tools, TRF [44] and WindowMasker [45] 
(Supplementary Figure S11(B)).

In the identified novel repeat families, two families may 
be unidentified subfamilies of existing LTR repeat fami-
lies. The LTR regions are repeat regions that originally 
existed in pairs flanking the retroviral genome in the same 
orientation [46]. Although some LTR region are now iso-
lated by the recombination, this characteristic LTR struc-
ture is retained in many genome regions. he first LTR 
subfamily candidate was NRF-10, which represents the 
LTR portion of an LTR retrotransposon and is present 
as a solo LTR or part of an intact LTR element. NRF-10 
seemed to be a subfamily of the LTR19 family, because 
NRF-10 frequently appeared adjacent to fragments of 
the LTR19 family members (Fig. 3A, Supplementary Fig-
ure S12). In one case, NRF-10 was adjacent to an intact 
LTR-19 family member with two LTR regions flanking the 
internal sequence, suggesting that NRF-10 derived from 
an LTR element (Supplementary Figure S12).

To test this hypothesis, we conducted two additional 
analyses. First, we retrieved the protein sequences 
of HERVFH19, an endogenous retrovirus related to 
the LTR19 family [49], from repeatmasker.org [10] 
and aligned the ±10kb regions of NRF-10 using LAST 
[38]. As a result, HERVFH19 protein sequences were 
detected in 12 out of 31 NRF-10 regions. Notably, these 
elements were found only on one side of the NRF-10 
regions (Supplementary Figure S13). This observation 
suggests that NRF-10 elements occur at the termini of 
HERVFH19, consistent with the characteristics of LTR 
sequences. Second, we conducted a phylogenetic tree 
analysis of the LTR19 family and NRF-10. Specifically, 
we first extracted all annotated sequences of the LTR19 
family and NRF-10 using SeqKit [50]. When NRF-10 
was found adjacent to the LTR19 family within a 500-
base span, these sequences were concatenated into a 
single sequence using bedtools [51]. We used MER50C 
as the outgroup because MER50C diverged earlier 
than LTR19A, B, and C [52]. As a result, sequences 

Table 2 Software performance for the complete human 
genome dataset

The bold values are the highest scores among d. “Mem” represents the amount 
of memory used. The computations were performed on an Intel Xeon Gold 6148 
Base 2.4GHz CPU with 32 parallel cores and 12GB memory per core

Time[h:m:s] Mem[GB] Sensitivity Specifiity F‑score

REPrise 
( d = 0)

5:57:46 36.68 76.96 91.85 84.09

REPrise 
( d = 1)

37:40:56 67.64 77.68 92.11 84.63

REPrise 
( d = 2)

693:34:27 151.67 78.14 92.46 85.04
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containing NRF-10 form a subtree within the LTR19 
family. These two results suggest that NRF-10 rep-
resents a novel subfamily of the LTR19 family that is 
associated with HERVFH19.

The second LTR subfamily candidate was NRF-13, as 
many sequences from this repeat family overlapped with 
the LTR45 family (Supplementary Figure S14(A,B)). In 
addition, like NRF-10, there were also an example of LTR-
specific structures forming in NRF-13 as well as NRF-10 
(Supplementary Figure S14(C)). Therefore, we conducted 
a phylogenetic tree analysis for NRF-13. However, given 
the absence of a suitable outgroup for the LTR45 family, 
we established an unrooted phylogenetic tree (Supple-
mentary Figure S15). We found that sequences encom-
passing NRF-13 also clustered into a distinct subtree, 
potentially representing another subfamily within the 
LTR45 family.

In this study, to investigate the usefulness of REPrise 
in identifying highly novel repeat families, we adopted 
strict criteria for their identification. Therefore, although 
we discovered some novel repeat families, we may have 
missed unidentified repeat subfamilies that are largely 
consistent with known repeat families but possess dis-
tinct regions. A more detailed analysis of individual 
repeat families detected by REPrise should reveal further 
novel repeat subfamilies.

Discussions
In this study, we developed REPrise, a highly sensitive 
tool for de novo detection of interspersed repeats. The 
significant advantage of REPrise is that it can be applied 
to the entire large genome sequences, such as the human 
genome. Currently, the widely used RepeatModeler2 
pipeline for de novo repeat library construction relies 
on the internal execution of RepeatScout. RepeatMod-
eler2 samples approximately 400MB of sequences during 
de novo repeat library creation, constituting only about 
13% of the human genome. Due to the non-uniform dis-
tribution of interspersed repeats, there is a potential risk 
of overlooking certain repeat sequences, particularly in 
species with large genomes. In contrast, REPrise is inher-
ently designed to handle large sequences and exhibits 
linear time complexity in relation to sequence length, 
addressing these limitations in current methodologies.

One of the important issues with REPrise is its compu-
tational cost. For example, running the human genome 
with d = 2 requires approximately 700 hours (Table  2). 
Therefore, future development to make REPrise faster is 
an essential research issue. As the bottleneck in REPrise’s 
runtime lies in the repeated search for inexact seed, 
potential improvements include optimizing seed search 
algorithms and storing intermediate results. On the other 
hand, since repeat annotation is typically performed only 

Fig. 3 A An example of NRF-10 (’novel_repeat_family-10’ in the figure) region with RepeatMasker Repetitive Elements displayed on the UCSC 
genome browser. B A phylogenetic tree of annotated regions of NRF-10 and LTR19 subfamilies. NRF-10|LTR19-A and NRF-10|LTR19-B are 
concatenated sequences of NRF-10 and LTR-19. The phylogenetic tree was visualized using ggtree [47] and ggtreeExtra [48]
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once after genome assembly, the long execution time may 
not be a critical limitation for most users.

The other issue with REPrise, similar to other de novo 
repeat detection software [24], is that it cannot capture 
the detailed structure of repeats due to challenges such 
as fragmentation (Supplementary Figure S6). Addressing 
this issue requires the use of TE curation pipelines [26], 
or performing manual curation [53]. REPrise can be used 
as part of such pipelines or manual curation, and its high 
sensitivity may help enhance their quality.

REPrise has multiple parameters, and the proper set-
ting is crucial for achieving high detection performance. 
In particular, the seed length k has a significant impact 
on the detection performance. In this study, we applied 
REPrise with various k values to genome data and 
selected the k value that achieved the highest perfor-
mance. However, in practical setting, k must be automati-
cally determined. In RepeatScout, the default k was set 
using the formula: k = log4 |T | + 1 . This length was cho-
sen such that the expected occurrence of a seed sequence 
within a random genome sequence is less than one. 
Based on this concept, we set the default k in REPrise as 
follows. Let l be the smallest natural number for which 

1 >

|T |·�d
d′=0

(

l

d′

)

3d
′

4l
 , and then set k = l + 1 . When com-

paring the automatically determined k value with the 
empirically determined k value, the two values were simi-
lar (Supplementary Table  S4). This result suggests that 
our method of automatically determining k holds some 
level of validity. Exploring a more appropriate automatic 
method for determining k remains an essential topic for 
future research.

We envisioned two strategies for further enhancing the 
performance of REPrise. The first focuses on refining the 
seed design. Although the inexact seeding has improved 
detection sensitivity, the computational runtimes have 
also significantly increased. Therefore, improving compu-
tational speed is a critical issue. One possible solution is 
to adopt sparse seeding, a method commonly used in the 
sequence alignment, particularly for mapping long reads 
[54]. In this design, only a subset of subsequences in the 
genome serve as candidate seeds, rather than utilizing 
all subsequences. While this approach could drastically 
reduce the computation time, it may also diminish the 
detection sensitivity. Another direction for refining seed 
design is accounting for indels to further improve sensi-
tivity. Recently, the ’strobemer’ has been proposed as a 
seed design for efficient handling of indels in sequence 
alignment [55]. The strobemer is a combination of multi-
ple short k-mers and can account for potential insertions 
between two k-mers. The application of the strobemer to 
interspersed repeat detection may lead to the discovery 
of further novel repeat family candidates.

The second is enhancing the estimation accuracy of the 
number of repeat families. Our simulation experiments 
revealed that both RepeatScout and REPrise overesti-
mated the number of families when the number of indels 
was high. Because many interspersed repeats in empiri-
cal genomes have nested structures or large indels [1], the 
current estimates for the number of repeat families may be 
inflated. One feasible solution is to merge repeat families 
based on sequences surrounding the detected repeats. For 
instance, Red [18] and RepLoc [20] determine repeat posi-
tions in the genome using k-mers without identifying the 
repeat families, and integrating these tools into REPrise 
could improve the accuracy of family number estimates.

Conclusion
REPrise is a de novo repeat detection software based 
on the seed-and-extend approach, with enhancements 
such as inexact seeding, affine gap scoring, and loose 
masking to improve sensitivity. REPrise showed better 
repeat detection performance than RepeatScout on both 
empirical and simulation genome datasets, especially for 
repeats with many sequence mutations. Additionally, as 
a practical application of REPrise, we identified several 
novel repeat families in the complete human genome 
T2T-CHM13 v2.0. REPrise should be a valuable tool for 
comprehensive repeat annotation, especially in genomes 
lacking well-curated repeat databases.
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