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Abstract 

Retrotransposons are genetic elements with the ability to replicate in the genome using reverse transcriptase: they 
have been associated with the development of different biological structures, such as the Central Nervous System 
(CNS), and their high mutagenic potential has been linked to various diseases, including cancer and neurological 
disorders. Throughout evolution and over time, Primates and Homo had to cope with infections from viruses and 
bacteria, and also with endogenous retroelements. Therefore, host genomes have evolved numerous methods to 
counteract the activity of endogenous and exogenous pathogens, and the APOBEC3 family of mutators is a prime 
example of a defensive mechanism in this context.

In most Primates, there are seven members of the APOBEC3 family of deaminase proteins: among their functions, 
there is the ability to inhibit the mobilization of retrotransposons and the functionality of viruses. The evolution of the 
APOBEC3 proteins found in Primates is correlated with the expansion of two major families of retrotransposons, i.e. 
ERV and LINE-1.

In this review, we will discuss how the rapid expansion of the APOBEC3 family is linked to the evolution of retrotrans-
posons, highlighting the strong evolutionary arms race that characterized the history of APOBEC3s and endogenous 
retroelements in Primates. Moreover, the possible role of this relationship will be assessed in the context of embryonic 
development and brain-associated diseases.
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Introduction
Located on human chromosome 22, the APOBEC3 
(apolipoprotein B mRNA-editing catalytic polypeptide-
like 3) genes encode for deaminase proteins that can 
catalyze the deamination of cytosine-to-uracil (C to U) 
on single-stranded DNA and/or RNA. APOBEC3s (A3s) 
are only present in placental mammals [1, 2] and are part 
of the AID/APOBEC superfamily of proteins involved in 
immunity, metabolism, and infectious diseases (reviewed 
in [3]). In most primates and Homo, the APOBEC3 family 

is represented by seven members: APOBEC3A/B/C/D/F/
G/H, first annotated by Jarmuz et al. (2002) [4].

Since their discovery, A3 genes have been studied 
mostly for their capacity of inhibiting a wide range of 
exogenous viruses, such as Human/Simian immunodefi-
ciency virus (HIV/SIV) [5, 6] and hepatitis B virus (HBV) 
[7]. In humans, four genes (A3D/F/G and stable haplo-
types of A3H) can inhibit HIV-1 replication by induc-
ing C-to-U hypermutations in viral genomes and/or by 
deaminase-independent mechanisms [8–10].

On the other hand, A3s can counteract the mobiliza-
tion of endogenous retroviruses and other retrotranspo-
sons, such as Alu and LINE-1. Indeed, retrotransposons 
account for nearly half of the primates’ genome, with 
LINEs and SINEs far more represented than ERVs, and 
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have been constantly influencing primate genome’s 
evolution.

Interestingly, in primates and Homo A3 proteins have 
been faced with strong positive selection, duplications 
and fusions that gave rise to the currently known seven 
members of the APOBEC3 gene cluster. Such expansion 
is a consequence of the co-evolution between A3 pro-
teins and their counterparts, i.e. viruses and retrotrans-
posons [11, 12].

In this review, we will discuss the state-of-the-art lit-
erature about the evolution of A3 genes and retrotrans-
posons, focusing on the role of the formers in regulating 
mobilization and expression of endogenous retroele-
ments. Finally, we will highlight the strong evolutionary 
link between A3 proteins and retrotransposons, which 
probably co-evolved in the context of a strong evolution-
ary arms race that characterized the patterns of specia-
tion, radiation and evolution of primates.

Overview of retrotransposons
Transposable Elements (TEs), discovered in the mid-
1940s by Barbara McClintock [13], are short DNA 
sequences, usually between a few hundred bp and ~ 10 kb 
[14–19] (but polintons can be longer than 20 kb [20–22]), 
which have the ability to replicate or multiply in the 
genome.

Retrotransposons, which belong to Class I mobile ele-
ments, move via an RNA intermediate [23, 24] that 
is then reverse-transcribed and use a copy-and-paste 
mechanism that allows these elements to increase the 
number of their copies. They are grouped into Long Ter-
minal Repeats retrotransposons, to which the Human 
Endogenous Retrovirus (HERV) family belongs, and non-
LTR retrotransposons, which include Long Interspersed 

Elements 1 (LINE-1  s or L1s), Short Interspersed Ele-
ments (SINEs)—such as Alu-like TEs—and SINE-VNTR-
Alus (SVAs) [25], as shown in Fig. 1.

HERVs are endogenous viral elements that resemble 
and are derived from infectious retroviruses, however 
they are typically not infectious. HERVs are composed 
of group-associated antigen (gag), polymerase (pol) and 
envelope (env) genes, along with two LTRs at the 3’ and 5’ 
regions [14, 15].

Full-length human LINE-1s are ~ 6  kb long [16, 17] 
with a ~ 900 bp long 5’ untranslated region (5’ UTR) with 
internal promoter activity [26], a ~ 150  bp long 3’ UTR 
and a poly(A) tail [16]. L1s also contain two Open Read-
ing Frames (ORF1 and ORF2), which encode, respec-
tively, for a ~ 40  kDa protein with RNA binding and 
chaperone activities [27, 28] and for a ~ 150 kDa protein 
with reverse transcriptase (RT) and endonuclease (EN) 
activities [29, 30]. Both ORFs are required for L1s mobili-
zation in the human genome [31].

The main family of SINEs in the human genome is 
essentially represented by Alus. Alu elements are ~ 300 bp 
long and have a dimeric structure determined by the 
fusion of two 7SL-RNA-derived monomers, separated 
from each other by an A-rich linker region [32]. The 5’ 
region carries an internal RNA III polymerase promoter, 
and at the end of the element there is an oligo dA-rich 
tail of variable length.

SVAs are primate-specific retrotransposons that ter-
minate with a poly-A tail (similarly to L1s). Their name 
synthesizes the three components of their sequence: the 
3’ LTR region of the endogenous retrovirus HERV-K10 
(SINE-R), a Variable Number Tandem Repeats (VNTR) 
region and an antisense Alu-like region. Because of the 
polymorphism of their VNTR region copy number 

Fig. 1 Retrotransposons mobilization mechanisms and structure. Non-LTR retrotransposons move via an RNA intermediate that is then 
reverse-transcribed
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(48–2.306  bp), SVAs may vary in size; however, more 
than a half are ~ 2 kb long [19].

L1s are the only known autonomously active TEs in 
humans [33–35]; on the other hand, retrotransposition in 
Alus and SVAs is still made possible thanks to the L1s’ 
enzymatic machinery [36].

Evolution of retrotransposons in primates
TEs had a role in growing the size of Eukaryotes’ genomes 
[36]. In mammals, the repetitive portion is dominated by 
LINEs and SINEs, followed by LTR retrotransposons, 
and then DNA transposons. In particular, in most mam-
mals, ~ 75% of repetitive sequences are derived from non-
LTR retrotransposons [37].

In primates, approximately 50% of the genome consists 
of TEs. LINEs and SINEs together make up for ~ 60% of 
total TE sequences in all investigated species of primates, 
suggesting their evolutionary importance across simians 
and prosimians [38].

For instance, primate specific Alu elements appear to 
have been inserted after the radiation between prosim-
ians and simians, approximately 100 million years ago 
(Mya), and a major expansion was estimated to have 

occurred from 50 to 25 Mya [39]. AluJ predates the divi-
sion between Strepsirrhini and Haplorrhini (~ 86 Mya) 
and, before the divergence of Platyrrhini and Catar-
rhini, AluS derived from AluJ and successively took over 
amplification approximately 55 Mya. Finally, AluY, the 
youngest family, evolved from the AluS subfamily and 
expanded in the Catarrhine lineage (Fig. 2), with Ya5 and 
Yb8 dominating in humans.

The history of LINE-1  s is far less characterized: cer-
tainly, in early primate evolution as many as three L1 
lineages (L1MA, L1PB, and L1PA) have been active 
in parallel for up to 30 My [40]. L1PA succeeded and 
remained active within the anthropoid lineage leading 
to the human specific L1PA1 [41]. Nowadays, the most 
active L1 subfamily in the human genome is L1-Ta1 [42], 
however some pre-Ta elements are still capable of retro-
transposition [43, 44].

SVA elements are more recent than L1 and Alu: the 
lack of SVAs in old world monkeys suggests that SVAs 
are hominid specific retroelements [19]. SVAs are rep-
resented by seven subfamilies, named SVA_A-F. Sub-
family age estimates based upon nucleotide divergence 
indicate that the expansion of four SVA subfamilies 

Fig. 2 Evolutionary tree of Primates and retrotransposons. SVA elements are Hominoidea-specific, while Alu and L1 are more ancient. The origin of 
different APOBEC3 genes is concurrent with the explosion of specific retrotransposon families, i.e. ERVs and L1s: A3G appeared just after the split of 
Simiiformes 43 Mya and during the invasion of ERVs, while A3B and A3D/F originated during the invasion of LINE-1 and the split between old world 
monkeys and Hominoidea (Apes + Humans)
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(SVA_A, SVA_B, SVA_C and SVA_D) began before 
the divergence of human, chimpanzee, and gorilla, 
while subfamilies SVA_E and SVA_F are restricted to 
the human lineage [19]. SVAs expanded in great apes, 
with a total of 2.700 elements in humans and around 
1.800–2.500 SVA elements found in the orangutan [45] 
and chimpanzee [46] genomes, respectively. Along-
side with SVAs, other composite elements have been 
identified in gibbons: LAVA (L1-Alu-VNTR-Alu), PVA 
(PTGR2-VNTR-Alu) and FVA (FRAM-VNTR-Alu) [47, 
48]. They combine simple repeats, Alu fragments, a 
VNTR and variable 3’ domains, which are, except for 
PVA, derived from other retrotransposons [49]. Pro-
liferation of non-autonomous retrotransposons in a 
particular genome is dependent on their expression in 
the germline and/or early embryo and on their efficient 
interaction with the proteins synthesized from their 
autonomous partner [49]. Notably, the central domain 
of VNTR composites evolved in a lineage-specific man-
ner which gave rise to distinct structures in gibbon 
LAVA, orangutan SVA, and human/chimpanzee SVA 
[50], suggesting an inextricable link between TEs and 
primate genomes that lead to speciation, radiation and 
evolution of primates [23].

The most ancient HERV groups formed before 
the separation of Catarrhini and Platyrrhini, that 
occurred ~ 40 Mya, being thus shared between primate 
species of both parvorders, as in the case of HERV-
L and HERV-H. Many other HERV groups, such as 
HERV-E and HERV-K(HML-2), are evolutionarily 
younger and have been acquired after the separation of 
Catarrhini and Platyrrhini [51]. Upon entering the host 
gene pool through integration in germline cells or in 
the precursors of germline cells, a provirus is known as 
an endogenous retrovirus (ERV) and is fated for either 
loss or fixation depending on random genetic drift and 
natural selection [52]. ERVs are genetic loci whose ulti-
mate origins trace back to exogenously replicating ret-
roviruses, even if the vast majority of ERVs are defective 
for viral gene expression as a consequence of mutations 
accumulated across thousands to millions of years of 
vertebrate evolution [52].

In human genomes, current estimates of TE content 
range from 49 to 69% [53]. HERVs account for 5–8% 
of the human genome [54], and LINE-1  s are probably 
the most impactful TEs in humans: LINE-1-derived 
sequences account for ~ 17% of human genome [55] and 
their encoded proteins (ORF1p and ORF2p) are able to 
mobilize non autonomous retrotransposons, other non-
coding RNAs and mRNAs, leading to the creation of 
processed pseudogenes. L1s and Alus together account 
for 60% of all interspersed repeat sequences in humans. 
L1s, in particular, have been identified as the TE type 

most active in mammals, suggesting an inextricable link 
between L1s and their hosts [56].

Evolutionary mechanisms such as natural selection and 
stochastic processes influence both the rate of fixation 
and frequency distribution of TEs in every organism. The 
efficiency of selection depends on the effective popula-
tion size, which has been estimated at ~  104 in humans 
[57]; therefore, in our species TE insertions (both posi-
tive and deleterious) may accumulate. Indeed, most of 
the actual human TE insertions are remnants of ancient 
insertions [36].

Active retrotransposition can provide opportunities 
for exaptation events, build novel regulatory networks, 
and even increase the adaptive potential of a popula-
tion (reviewed in [58–60]). Despite these benefits, many 
insertions are neutral or deleterious. Highly deleterious 
insertions will be rapidly purged from the gene pool and, 
thus, mammalian genomes have evolved several defense 
mechanisms to limit TEs expression and mitigate the 
potential deleterious effects of TEs activity [37], such as 
APOBEC3 proteins.

Evolution of APOBEC3 family in primates
APOBEC3A/C/H have a single cytosine deaminase (CD) 
domain. By contrast, APOBEC3B/D/F/G have two CD 
domains, of which only the C-terminal CD2 is catalyti-
cally active [61]. All A3 proteins share at least one zinc 
(Z)-coordinating catalytic motif, and A3 genes possess 
either one or two conserved zinc-coordinating motifs, 
in which the zinc is coordinated by a histidine and two 
cysteines. Z motifs can be classified into three groups 
(Z1, Z2, Z3), all sharing the consensus amino acid signa-
ture His-X-Glu-X23–28-Pro-Cys-X2–4-Cys (where X can be 
nearly any residue) [3, 4, 62, 63].

The existence of three paralog zinc-coordinating motifs 
in the sequence of the seven APOBEC3 members in the 
primate lineage suggests a complex sequence of duplica-
tions and fusions that gave origin to the current ensem-
ble of mutator proteins [12, 63, 64]. Specifically, primates 
carry three Z1 paralogs, seven Z2 paralogs, and one Z3 
paralog distributed across the APOBEC3 gene locus on 
chromosome 22 [65]. In modern humans, these eleven 
A3 open reading frames contribute to the seven genes 
by encoding either a single Z domain or a fusion of two 
(A3Z2-A3Z2 or A3Z2-A3Z1) in a complex organization 
[63]. These three motifs certainly existed at least as far 
back as the separation between placental mammals and 
marsupials, 148 Mya, and may have originated from a 
single gene copy, possibly predating egg-laying mam-
mals (247 Mya) [63]. Moreover, Münk and colleagues 
show that most duplications and rearrangements in the 
Z1 and Z2 groups, especially for the primate lineage, 
have happened over the last 100 My. When compared 
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with their sister group, the AICDA genes, the Z groups 
all show a higher evolutionary rate (AICDA: 7.41 ×  10–4 
substitutions per site per My; A3s: 2 ×  10–3 substitutions 
per site per My), but there is a significant decrease in the 
evolutionary rate of the Z groups over the last 100 My 
(p-value < 0.0007). Therefore, the A3 genes have a higher 
rate of substitutions than their sister groups, but the 
same rate has steadily reduced over time. The Z1 group 
has split twice: once around the basal divergence of pri-
mates (around 75 Mya), and again around the origin of 
the Hominoidea lineage (26 to 34 Mya) [63]. The phyloge-
netic relationships of the Z2 group are more complex to 
reveal, especially with regards to the primate lineage, but 
Münk and colleagues argue that a first duplication event 
(or even two) may have happened around the separation 
between Haplorrhini and Strepsirrhini (86 Mya) and cer-
tainly before the diversification of the Simiiformes (43 
Mya); based on sequence similarity, the several copies of 
Z2 that can be found in humans have definitely appeared 
by duplication, but their phylogeny is intricate and sep-
aration estimates could not be clearly supported [63]. 
Recently, Uriu and colleagues have performed a complete 
reannotation of the APOBEC gene family in primates, 
specifically highlighting the phylogenetic subclassifica-
tion of the A3 zinc domains [64]. Their work confirmed 
the amplification of the Z1 and Z2 domains in this line-
age, together with an accelerated increase in diversifica-
tion and complexity over time, especially with respect to 
Z3. By comparing sequences of Prosimians, New World 
Monkeys (NWM), Old World Monkeys (OWM) and 
Hominoidea, they suggest that the Z3 domain was pre-
served in the Simiiformes but lost in the Prosimians, 
while the generation of genes with multiple catalytic 
domains that have been conserved up to the present has 
first occurred in the common ancestor of Simiiformes 
[64]. Repeated instances of amplification, duplication 
and gene conversion have, then, produced the variety of 
A3 genes that can be observed across Simiiformes today. 
Interestingly, these events have been accompanied by 
the peak invasions of mobile elements in human DNA: 
specifically, ERVs peaked around the origin of A3G in 
the common ancestor of the Simiiformes, while LINE1 
peaked around the origin of A3B, D and F in the Catar-
rhini clade (OWMs and Hominoidea) [64]. Ito and col-
leagues (2020) explored the relationship between intact 
A3Z domains and ERV insertions in the mammalian 
genome and highlighted an acceleration in the accumu-
lation of Z domains over an increase of ERV insertions 
in primates [12]. At the same time, they suggested a 
parallel increase in the quantity of G-to-A mutations in 
primate ERV sequences and a higher estimated propor-
tion of ERV insertions in the ancestor of Simiiformes, 
which was not subsequently carried on in the NWMs 

[12]. Moreover, sequence analysis allowed to detect resi-
due conservation in the catalytic domains across all Z 
groups, as well as specific amino acid residues that are 
characteristic of each group [64]. These observations sug-
gest a notable relationship between primate evolutionary 
radiation, proportion of transposable element insertions 
over time and amplification of the defensive repertoire 
that brought to the variety of A3 genes observable in our 
species.

Overview of APOBEC3 functions
A3 genes are involved in various functions, from viral 
and retrotransposon restriction to cancer progression 
[66]. Indeed, several recent studies have described the 
role and mechanisms of action for this protein family in 
the context of cancer-related DNA mutagenesis, as it is 
becoming more and more clear that prevalent signatures 
of instability in cancer cell genomes are due to APOBEC3 
activity on transiently exposed single-strand DNA (for 
example, during DNA mismatch repair and lagging 
strand replication) [67–72]. This activity leaves signa-
tures along the double helix that are clearly traceable to 
A3 family members and are found predominantly in can-
cer cells [73]. As the structural details of A3s interaction 
with nucleic acids are being unveiled [74], the ambivalent 
effect of these protective enzymes is also being high-
lighted, as an elevated expression of APOBEC3s may 
provide a reason for aberrant cancer-inducing somatic 
mutations in human papilloma virus (HPV) [75–77] 
and HBV [78] infections, as well as an extensive range 
of other tumor types [73, 79, 80], even in the context of 
inflammation [81].

In fact, A3s strongly inhibit various types of exogenous 
viruses, including herpesvirus, parvovirus, papilloma-
virus and hepadnavirus [7, 82–84]. Sheehy et  al. (2002) 
isolated a gene that restricts HIV-1 replication, identi-
fied as APOBEC3G [5]. In HIV-1 and other viruses, the 
virion infectivity factor (Vif ) is a potent regulator of virus 
infection and replication and is consequently essential 
for pathogenic infections in  vivo [85–89]. Vif interacts 
with A3G, triggers the ubiquitination and degradation of 
A3G via the proteasomal pathway, by binding A3G and 
a Cullin5-ElonginBC E3 ubiquitin ligase complex which 
results in the proteasomal degradation of A3G. There-
fore, Vif is required during viral replication to inactivate 
the host cell antiviral factor A3G [90]. Indeed, the pres-
ence of a mutant Vif results in a failure to bind A3G, 
which in turn results in A3G incorporation into assem-
bling virions with loss of viral infectivity [90].

A3 proteins also inhibit the mobilization of endog-
enous retroviruses and other retroelements, such as Alu 
and L1. For instance, Esnault and colleagues (2005) dem-
onstrated that A3G can interfere with the mobilization 
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of murine ERV elements, such as IAP and MusD, by 
inducing G-to-A hypermutations in the proviral DNA 
plus strand [91]. In recent years, most A3 family mem-
bers have been shown to be able to counteract the activ-
ity of Alus and L1s in humans and primates, both in 
the nucleus and in the cytoplasm. For instance, A3G 
is able to repress Alu retrotransposition without inter-
acting directly with L1 [92, 93], in fact A3G can inhibit 
L1-dependent retrotransposition by sequestering Alu 
RNAs in the cytoplasm, therefore being away from the 
nuclear L1’s enzymatic machinery. Different A3 proteins 
have diverse cellular localization patterns: A3A/C/H act 
both in the cytoplasm and in the nucleus; A3B only in the 
nucleus; A3D/F/G are active in the cytoplasm [94]. Given 
these critical functions, it is no surprise that the A3 fam-
ily is being studied in the context of cancer, antiviral and 
immune-related drug discovery [95–98].

The evolutionary arms race between APOBEC3 
and retrotransposons
The evolutionary arms race [99] is an ongoing struggle 
between competing sets of co-evolving genes, pheno-
typic/behavioral traits or species, that develop escalating 
adaptations and counter-adaptations against each other.

Retrotransposons in humans are counteracted by dif-
ferent mechanisms, for example the Piwi-interacting 
RNA (piRNA) pathway and the Krüppel-associated 
box zinc finger (KRAB-ZNF) proteins (reviewed in 
[33]), which are able to repress TEs mobilization and 
expression. In a similar way, some components of the 
APOBEC3 gene cluster are involved in the control of ret-
rotransposons. Indeed, the rapid co-evolution between 
the A3 locus and different retroviruses, and the positive 
selection acting on A3 genes are signals of the continuous 
arms race that characterized A3s, viruses and retroele-
ments [61, 100, 101].

First discovered by Sheehy and colleagues as a defense 
against HIV-1 virus [5], A3G is able to repress ERVs 
mobilization in both mouse and human cells, by induc-
ing G-to-A hypermutations in the nascent DNA of ERV 
elements, such as IAP and MusD in mice and HERV in 
humans [91]. Therefore, by editing viral genetic mate-
rial, it provides an ancestral wide cellular defense against 
endogenous and exogenous invaders.

Other proteins of the A3 family can counteract LTR 
retrotransposons’ activity: A3A and A3B. A3B acts simi-
larly to A3G, by specifically interacting with the ERV Gag 
protein in co-expressing cells and inducing extensive 
editing of ERV reverse transcripts [102]. On the contrary, 
A3A, which can restrict ERVs in human cells by 100-fold 
(compared to a fourfold inhibition of these elements by 
A3G), fails to package detectably into ERV virus-like par-
ticles and does not edit ERV reverse transcripts [102].

Inhibition of L1 by A3 occurs at the post-transcrip-
tional level by a deamination-dependent or independent 
mechanism. The most active enzyme (with respect to L1) 
A3A has deaminase activity and converts C-to-U in the 
first strand of the L1 cDNA transcript. As a result of such 
modification, the deamination of transiently exposed 
DNA leads to the truncation/abortion of retrotranspo-
sition [103]. A different mechanism has been identified 
for A3C and A3D: acting by a deamination-independent 
mechanism, the enzyme blocks the L1 reverse transcrip-
tion reaction by interacting with the L1 complex of rib-
onucleoprotein (RNP) and ORF1 in the cell cytoplasm 
[104, 105].

Recently, Uriu and colleagues (2021) investigated the 
evolutionary forces that drove the generation of the 
youngest A3 members, i.e. A3B and A3D/F. Notably, the 
invasion of LINE-1 and Alu peaked around the age of the 
common ancestor of Catarrhini (29 to 43 Mya), concur-
rently with the generation of A3B and the duplication of 
A3D/F, suggesting that the origin of these A3 genes in 
the common ancestor of Catarrhini could be driven by 
the invasion of LINE-1 and Alu [64]. The same Authors 
suggest that the origin of A3G dates back to the age of 
the common ancestor of Simiiformes (67–43 Mya), when 
there was an invasion of ERV elements. Indeed, A3B 
potently suppresses the growth of LINE-1 [106–108], 
whereas A3F inhibits the replication of vif-deleted HIV-1 
[109], HERV-K [110] and LINE-1 [106]. Altogether, these 
findings suggest that retrotransposons invasion in the 
common ancestor of Catarrhini and Simiiformes was a 
driving force of the powerful co-evolution between TEs 
and A3 proteins [64].

Interestingly, DNA editing of retrotransposons has 
been proposed to be a source of genome evolution, in 
fact DNA editing by APOBEC3 can induce many muta-
tions in a single event. That way, a given element could 
change to such an extent that its evolutionary trajectory 
could be altered [66]. With the help of new mutations, 
retrotransposons’ sequences can vary significantly, and 
these elements can acquire new and diverse functions in 
the host genomes. For instance, they can still play a func-
tional role as exapted enhancers or transcriptional start 
sites [111–114], by inserting Transcription Factor Bind-
ing Sites (TFBS) [115, 116] or by acting as novel RNA 
genes such as long non-coding RNAs (lnc-RNAs) [117]. 
TEs can also affect translation regulation when tran-
scribed within a mRNA and contribute to protein-cod-
ing regions both at the transcript and the protein level, 
and some TE-encoded proteins have been domesticated 
and are part of host genes [118]. Moreover, TEs can be 
involved in the generation of genes and pseudogenes 
[119–121] and can generate diversity through active 
transposition in germline cells, which can create novel 
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insertions that are capable of being inherited, thereby 
generating human-specific polymorphisms. TEs also 
play key roles in embryogenesis [122–124], speciation 
[125, 126] and possibly neurogenesis [127–129].

Carmi and colleagues (2011) found many pairs of ret-
rotransposons containing long clusters of G-to-A muta-
tions that cannot be attributed to random mutagenesis 
and demonstrated that these clusters, which they found 
across different mammalian genomes and retrotrans-
poson families, are the hallmark of APOBEC3 activity, 
suggesting a potential mechanism for retrotransposon 
domestication [130]. Therefore, DNA editing can help to 
explain how some retrotransposons have acquired such a 
diverse collection of functions in primate genomes [130].

Emerging perspectives
Located on human chromosome 22, the APOBEC3 fam-
ily of deaminase proteins has a wide range of functions, 
from tumor progression to viruses and retrotransposons 
restriction.

In this review, we discussed the different mechanisms 
by which A3 genes inhibit retrotransposons prolifera-
tion, by inducing C-to-U or G-to-A hypermutations in 
the nascent DNA or by interacting with the L1 complex 
of RNP and ORF1 in the cell cytoplasm.

The origin of the APOBEC3 gene cluster is an extraor-
dinary example of coevolution between a defense mecha-
nism and its counterpart: different A3 genes appeared by 
duplications, fusions and rearrangements in primates, 
and such events happened concurrently with the inva-
sion of some retrotransposons, most notably ERV and L1 
(Fig. 2). Indeed, a strong evolutionary arms race shaped 
the evolution of A3 genes and retrotransposons in pri-
mates and Homo. Diversification and functional differ-
entiation of antiviral genes has led to the establishment 
of species-specific antiviral defenses, such as that of 
APOBEC3, which plays a pivotal role in regulating cross-
species viral transmission [76]. In summary, the defensive 
roles of A3 genes are attributable to their rapid and com-
plicated evolution, driven by retrotransposons.

Karagianni and colleagues (2022) have recently sug-
gested that RNA editing is an emerging mechanism in 
disease development, displaying common and disease-
specific patterns, in the context of neuropsychiatric and 
neurodegenerative disorders [131]. APOBEC3-driven 
RNA editing is responsible for alternative splicing, regu-
lation, degradation, and secondary structure changes 
that directly affect nucleic acid functions in the brain 
[131]. As highlighted previously, A3s are involved in ret-
rotransposons inhibition and, although the mechanistic 
details of the functional and evolutionary impact of ret-
rotransposons in the brain and nervous system are still 
unknown, an increasing bulk of data suggests that TEs 

play a role in the development of the CNS (reviewed in 
[132–134]) and contribute to neurological disorders 
(as recently reviewed in [135–137]). Commonly edited 
RNAs represent potential disease-associated targets for 
therapeutic and diagnostic values [131]: indeed, a recent 
work by Macciardi and colleagues (2022) showed that a 
strong dysregulation in TEs expression is associated with 
different stages of Alzheimer’s disease development, pro-
viding clues on the use of expression profiles as potential 
predictors of the disease [138]. These findings have major 
implications for understanding the neuroplasticity of the 
brain, which probably had a remarkable impact on brain 
evolution in mammals, especially in Hominids, and could 
contribute to vulnerability to neurological disorders.

During mammalian embryonic development, retro-
transposons are expressed at different levels and play 
essential roles in embryonic stem cells (ESC) differentia-
tion and pre-implantation embryos, as suggested by sev-
eral recent publications [118, 123, 124, 139]. Moreover, it 
is proposed that mutator proteins such as the APOBEC 
superfamily may interfere with retrotransposon expres-
sion patterns to determine different levels of TEs activity 
in different cell types [107, 108, 118]. Indeed, it is sug-
gested that A3B is highly expressed in human pluripo-
tent stem cells, making LINE-1 silencing more efficient in 
the early stages of cell differentiation [108]. This is in line 
with experimental findings that retrotransposons (both 
LTR and non-LTR) are predominantly active in human 
embryos at the 8-cell stage and are down-regulated fol-
lowing whole-genome activation [140, 141]. Further-
more, it is reported that all APOBEC3 proteins seem to 
be able to act as inhibitors of LINE-1 retrotransposons 
[142–145], while Alu elements are particularly restricted 
by A3F and A3G, sometimes in macromolecular com-
plexes [92, 93, 146]. These observations point towards an 
essential contribution of APOBECs as modulators of TEs 
expression across embryonic developmental trajectories, 
although further studies are needed to elucidate the link 
between A3 proteins, retrotransposons, and develop-
mental processes.

Conclusions
Retrotransposons are endogenous genetic elements 
with the ability to move around in the genome, and 
because of their high mutagenic potential the major-
ity of TEs have been faced with negative selection and 
are counteracted by numerous mechanisms. In pri-
mates and humans, A3 genes probably arose in the 
context of a strong evolutionary arms race between ret-
rotransposons and their hosts, leading to the expansion 
of this family of mutator proteins, which eventually 
became one of the strongest host defense mechanisms. 
The functional relationships between exogenous viral 
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elements and the A3 family already suggested a similar 
association; however, several recent studies have pin-
pointed the positive impact of the non-coding genome 
on human and primate evolution through the regula-
tion of gene expression (for example, during embry-
onic development). This, in turn, is paving the way for 
new discoveries around the evolutionary association 
between retrotransposons and A3 proteins, especially 
in the context of primate speciation. Interestingly, one 
of the peculiarities of primates is related to brain devel-
opment, especially in the Hominoidea lineage. Indeed, 
retrotransposons contributed to the evolution of the 
CNS throughout primate phylogeny, exerting a remark-
able influence on the tradeoff between brain physiology 
and pathological conditions in humans. In conclu-
sion, the competition between retrotransposons and 
APOBEC3 genes has not only led to the development of 
a diversified immune defense mechanism but has also 
contributed to the evolutionary relationships among 
the primate species that are currently known.
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