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Abstract 

Background: ICEs are mobile genetic elements found integrated into bacterial chromosomes that can excise and be 
transferred to a new cell. They play an important role in horizontal gene transmission and carry accessory genes that 
may provide interesting phenotypes for the bacteria. Here, we seek to research the presence and the role of ICEs in 
300 genomes of phytopathogenic bacteria with the greatest scientific and economic impact.

Results: Seventy-eight ICEs (45 distinct elements) were identified and characterized in chromosomes of Agrobac-
terium tumefaciens, Dickeya dadantii, and D. solani, Pectobacterium carotovorum and P. atrosepticum, Pseudomonas 
syringae, Ralstonia solanacearum Species Complex, and Xanthomonas campestris. Intriguingly, the co-occurrence of 
four ICEs was observed in some P. syringae strains. Moreover, we identified 31 novel elements, carrying 396 accessory 
genes with potential influence on virulence and fitness, such as genes coding for functions related to T3SS, cell wall 
degradation and resistance to heavy metals. We also present the analysis of previously reported data on the expres-
sion of cargo genes related to the virulence of P. atrosepticum ICEs, which evidences the role of these genes in the 
infection process of tobacco plants.

Conclusions: Altogether, this paper has highlighted the potential of ICEs to affect the pathogenicity and lifestyle of 
these phytopathogens and direct the spread of significant putative virulence genes in phytopathogenic bacteria.
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Background
Integrative and conjugative elements (ICEs) are self-
transmissible mobile elements that play a central role in 
bacterial adaptation processes; hence, they can directly 
affect the evolution of their host [1, 2]. These widely 
distributed elements are currently found integrated 
into the bacterial chromosome, as they are capable of 

performing their excision, by recombination of direct 
repeat sequences (DRs) that flank the element (attach-
ment sites), and transference by conjugation, carrying 
their machinery in a modular structure [3–5]. The main 
genetic modules found in ICEs include genes that encode 
functions related to their integration and excision from 
the host chromosome, conjugation, and regulation. These 
modules also have variable content, which leads these 
functions to be performed by different mechanisms 
from a diverse range of genes [5, 6]. ICEs often carry 
cargo genes, thus conferring significant phenotypes to 
the host cell, such as virulence, resistance to antibiotics 
and heavy metals that are important to bacteria fitness. 
For instance,  ICETn43716061 discovered on Pseudomonas 
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aeruginosa, provides resistance against carbapenem anti-
biotics, and ICEPm1 of Proteus mirabilis, Providencia 
stuartii and Morganella morgani, which carry genes that 
encode an adhesion protease and an iron acquisition sys-
tem that contributes to the virulence of these bacteria [4, 
7–9].

ICEs are broadly distributed in bacterial chromosomes, 
and some studies demonstrate their presence in plant 
pathogenic bacteria, which are microorganisms involved 
in major crop losses by host tissue invasion using viru-
lence factors such as biofilm formation and toxins [3, 10]. 
For instance, different ICEs were found in strains of Pseu-
domonas syringae pv. actinidiae conferring resistance to 
heavy metals, and ICE HAI2 of Pectobacterium atrosep-
ticum, which transmits genes that codify a biosynthetic 
cluster of an important virulence factor [11, 12]. Among 
these phytopathogenic bacteria, the most relevant were 
classified by Mansfield et al., in 2012, according to their 
scientific relevance and economic impact, in a ranking 
composed of Pseudomonas syringae, Ralstonia solan-
acearum, Agrobacterium tumefaciens, Xanthomonas ory-
zae pv. oryzae, Xanthomonas campestris, Xanthomonas 
axonopodis pv. manihotis, Erwinia amylovora, Xylella 
fastidiosa, Dickeya (dadantii and solani) and Pectobacte-
rium (carotovorum and atrosepticum) [13].

A large part of pioneer studies involving ICEs was 
based only on phenotypes conferred by cargo genes and 
did not provide broader knowledge about these elements 

[5]. However, the development of Whole-Genome 
Sequencing (WGS) efforts leading to the large availability 
of complete genome sequences has enabled the conduct-
ing of investigation to clarify the role of ICEs in bacterial 
evolution [14–16]. Thus, here we search for ICEs inte-
grated into 300 complete genomes of major phytopatho-
genic bacteria and analyze putative cargo genes and their 
potential role in virulence or adaptation.

Results
The most comprehensive dataset of ICEs found integrated 
into the plant pathogenic bacteria genomes
We first sought to identify and analyze ICEs in the 
genomes of important plant pathogenic bacteria in 
molecular plant pathology. A total of 78 putative ele-
ments were found in nine species of phytopathogenic 
bacteria, including the species of D. dadantii, D. solani, P. 
atrosepticum, P. carotovorum, A. tumefaciens, P. syringae, 
X. campestris, X. fastidiosa and R. solanacearum species 
complex (RSSC) (Fig. 1 and Table S11). Among these ele-
ments, 45 ICEs were found to be distinct, and a greater 
number of ICEs were found in the genome of P. syringae 
(33, 20 of which were distinct elements) (Fig. 2A). There 
were no ICEs identified in the chromosomal sequences of 
X. oryzae, X. axonopodis, or E. amylovora.

The elements exhibited great variation in sequence 
size. The largest element ICEPsy10 was found in  
P. syringae with 161 kb and the smallest ICEDda2 was 

Fig. 1 Distribution of ICEs among bacterial strains. Solar explosion chart indicating the elements found in all strains. Bacterial species were 
arranged from the species with the largest number of elements to the species with the least number of elements and separated by color: Lilac: P. 
syringae; Dark blue: D. solani; Light blue: R. pseudosolanacearum; Green (from the darkest to the lightest, respectively): P. atrosepticum, X. fastidiosa, 
A. tumefaciens, X. campestris; Yellow: R. syzigii; Light orange: P. carotovorum; Dark orange: D. dadantii. From the inside out of the chart: The bacterial 
species, name of the strains, and the identified elements present in each strain. b Hierarchical organization of ICEs distribution around bacterial 
species, with color-coding in species as shown in the legend. The scale beside the plot shows the number of ICEs found for each species
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found in D. dadantii with 40  kb. Overall, the aver-
age size of the elements was 80  kb. The GC content 
ranged from 40 to 66%, which was found in ICEPat2 
and ICEXfa2, respectively. The average content was 
55% (Fig.  2F and Table S12). As already expected, no 
relationship was found between the increased size 
of the host genome and the presence of the elements 
(Fig. 2B).

Most of the elements (88%, n = 68) were found 
inserted in tRNA genes, whilst nine were found in 
other genes. Attachment sites (att) were identified in 
49 ICEs; however, our search methods did not find the 
att sites in any elements integrated into RSSC genomes 
(Table S13). 58 ICEs encode the Tyr recombinase 
family, and 34 ICEs encode the  MOBH relaxase gene 
(Fig. 2C, D; Table S14).

Interestingly, we found ICEs with core modular 
genes seen in other species. The ICEPca2 from P. caro-
tovorum was found in the genome of Serratia plymuth-
ica C-1 strain, and comparative analysis demonstrated 
that the elements share 99% nucleotide similarity (Data 
not shown). Also, ICEPca1 shared 82% of nucleotide 
identity with a novel ICE from P. aroidearum strain L6; 
ICEXca1 shared 88% sequence identity with a novel 
ICE from Xanthomonas arboricola pv. juglandis strain 
Xaj 417. Two ICEs from our dataset, ICEDda1 from D. 
dadantii and Tn4371 of R. pseudosolanacearum had 
been previously classified in the family Tn4371  [15, 
17]. However, comparative analyses between these two 
elements indicated low similarity (45% of nucleotide 
identity).

ICEs carry genes with potential impact 
on the pathogenicity and lifestyle of plant pathogenic 
bacteria
The genes carried by the elements were also investi-
gated and classified for their putative role. As expected, 
a greater number of hypothetic proteins and genes 
with unknown functions were identified, followed by 
conjugation and cargo genes, in general (Fig. 3A). Spe-
cifically, among the cargo genes, those encoding func-
tions of oxidation–reduction processes and resistance 
appeared in a greater number of ORFs (open reading 
frames) in the elements, followed by virulence factors 
(Fig.  3B). Putative virulence and adaption roles were 
verified in most ICEs by the annotation in specific pro-
tein databases. Genes codifying virulence functions 
were tracked down in 28 elements, while with putative 
adaption, roles were spotted in 12 ICEs, among other 
important roles, such as metal and antibiotic resist-
ance (Table S15). Regarding virulence, genes were also 
organized according to their putative function, and the 
most frequent class of virulence genes were genes that 
encode proteins translocated by Type III Secretion Sys-
tem (T3SS) and components of this system, followed 
by genes that encode hydrolytic enzymes involved in 
host cell wall degradation (Fig.  3C). Altogether, these 
two sections reveal the existence of ICEs in genomes of 
high-impact phytopathogenic bacteria and their likely 
impact on their pathogenicity and lifestyle. Now fur-
ther, we will present specific results for individual bac-
teria species.

Fig. 2 General ICES identification results. a Bar chart of ICEs number distribution by groups of bacteria (dark blue: total elements, light blue: 
different elements); b Distribution chart of genome size, in bases pair, compared to the size of ICEs; c The type of Integrases found in the ICEs. d The 
type of Relaxase family found in the ICEs. e Bar chart of ICEs size by species f ) Bar chart of GC content of the ICEs by species
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ICEs in Agrobacterium tumefaciens
Initially, we investigated chromosome sequences of 
seventeen strains available in the NCBI database, 
each one of them with two chromosomes. Then, we 
searched for ICEs in 32 sequences of A. tumefaciens 
chromosomes (Table S3). Our methods allowed the 
identification of four novel elements in sequences of 

three strains: ICEAtu1 was identified in the chromo-
some of the strain 1D1609, ICEAtu2, and ICEAtu3, 
in the circular and linear chromosomes of the strain 
12D1, respectively, and at last, ICEAtu4 was identified 
in the circular chromosome of the strain 186 (Fig.  1). 
These elements had a mean size of 86  kb; ICEAtu3 
was the element with the largest sequence (114  kb), 

Fig. 3 Putative functions of ICEs genes. a Bar chart of putative roles codified by ICEs genes separated by categories (Unsure category comprises 
Hypothetical protein, Domain of unknown function (DUF genes), and genes with undetermined function). b Bar chart of Cargo genes divided by 
putative roles. c Pie chart representing putative roles of Virulence factors carried by ICEs
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followed by ICEAtu4 (101  kb) and ICEAtu2 (68  kb), 
while ICEAtu1 was the smallest element, with 61 kb of 
length (Table S12). The mean GC content of the ele-
ments was 60% and ranged from 58% (ICEAtu3) to 63% 
(ICEAtu1). Only the elements ICEAtu2 and ICEAtu3 
from the strain 12D1 presented GC content lower than 
the genome: 58% and 58%, respectively (Table S12). 
The att sites of ICEAtu3 and ICEAtu4 were identi-
fied, and regarding the integration site, both elements 
and ICEAtu2 are inserted in tRNA sequences, and 
ICEAtu1 is inserted in the guaA gene (Tables S13 and 
14). The sequence alignment of the ICEs from A. tume-
faciens revealed that ICEAtu2 and ICEAtu4 share 53% 
of nucleotide identity, mainly due to the gene clusters 
that represent conjugation and integration modules 
based on syntenic analysis (Fig. S1, S2, S3, S4, S5, S6, 
S7, S8, S9 and S10A).

A. tumefaciens ICEs encode proteins that may 
have important functions for pathogenicity, such as 
cysteine hydrolase and glycosidase in ICEAtu1, and 
Endo-1,4-beta-xylanase in ICEAtu4. Likewise, Alkene 
reductase and glutathione S-transferase on ICEAtu1 
and universal stress protein on ICEAtu3 may have a 
putative role in the adaption of these bacteria. We also 
identified genes coding for a L.D – transpeptidase of 
ICEAtu3 and MBL fold metalo-hydrolase in ICEAtu4, 
which provides putative resistance to antibiotics (Table 
S15).

ICEs in Dickeya (dadantii and solani)
We search for ICEs in chromosomal sequences of thirteen 
Dickeya genomes, two of which are from D. dadantii, and 
eleven genomes belong to the D. solani species (Table S9). 
In those sequences, we were able to find three distinct ele-
ments, and a total of thirteen ICEs: ICEDda1 was found in 
the chromosomal sequence of the strain 3937 and ICEDda2, 
in the chromosome of the strain DSM 18,020. Interestingly, 
ICEDso1 was present in all strains of D. solani, hence, all 
investigated strains harbor ICEs (Fig.  1). Among these 
elements, only ICEDda1 has been cited in the literature, 
as an element of the Tn4371 family (Table S16) [17].

Regarding the size of those elements, ICEDda1 was the 
biggest element, with 74 kb, followed by ICEDso1 (48 kb), 
while ICEDda2 was the smallest, with 40 kb (Table S12). 
The GC content of all elements was lower than the con-
tent of the genomes, with a mean of 51%, so 52% were in 
ICEDso1, 52% in ICEDda2, and 49% in ICEDso1 (Table 
S12). Both ICEDda1 and ICEDso1 had their attachment 
sites identified and are inserted in tRNA sequences, and 
ICEDda2 was inserted in bamE gene (Tables S13  and 
14). The comparison among these elements revealed low 
similarity between each other (< 50% of nucleotide iden-
tity) (Fig.  4B). However, clusters of syntenic genes were 
observed between all three elements, which were related 
to recombinase genes, some transcriptional regulators 
and cargo genes related to the Type VI secretion system 
(T6SS). Furthermore, ICEDda1 and ICEDso1 may also 

Fig. 4 Different Expression Analyses—RPKM Heatmaps: Significant genes of P. atrosapticum elements ICEPa1 and ICEPa2 (SCRI1043 isolate) 
in tobacco plants. a Coronafacic acid biosynthesis gene cluster carried by ICEPca1. b Cargo gene of ICEPca2 with putative Virulence role – 
Phospholipase D. c Relaxases of ICEPca1 and ICEPca2. Scaled expression values are color-coded, and the red color represents high expression. 
Abbreviation: Z1: Asymptomatic zone, Z2: Symptomatic zone
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share their conjugation and regulation modules, since 
syntenic gene clusters comprise genes of type IV secre-
tion system (T4SS) and a toxin-antitoxin system were 
verified (Fig. S2). Among the main cargo genes of these 
ICEs, we identified a putative tellurium resistance (terB) 
and an entry exclusion (eexN) in ICEDda1. Moreover, 
component genes of T6SS, hcp effectors, and tssI—vgrG 
with putative virulence roles were verified in all three dif-
ferent elements (Table S15).

ICEs in Pectobacterium carotovorum (and atrosepticum)
Eight genomes from Pectobacterium were investigated, 
four from P. carotovorum (Pcc) and four from P. atrosep-
ticum (Pca). In total, nine elements were identified, six of 
which were distinct ICEs (Fig.  1, Table S10). In Pcc, we 
found ICEPcc1 and ICEPcc2 in genomes of the strains 
JR1.1 and BP201601.1, respectively. We observed several 
co-occurrences in the genome of Pectobacterium, includ-
ing two ICEs (ICEPca1 and ICEPca2) in the chromosome 
of SCRI1043, the ICEs (ICEPca1 and ICEPca3) in the 
strain JG10-08, and the elements ICEPca1 and ICEPca4 
in the genome of the strain 36A. Here, we identified five 
novel elements for the genus, and only ICEPca1 had been 
previously reported [12, 18, 19] (Fig. 1, Table S16).

The Pectobacterium ICEs presented similarity between 
ICEPca2 and ICEPcc1 with 69,5% of nucleotide iden-
tity, while between ICEPca2 and ICEPca4, it was 68,9% 
(Fig. S10C). Syntenic analyses revealed that most ele-
ments appear to have similar conjugation modules (high 
identity), except for ICEPca1, a highly syntenic gene 
cluster comprising conjugation and T4SS genes, and sim-
ilarity between integration genes for ICEPcc1, ICEPca2, 
ICEPcc2 and ICEPca4 (Fig. S3). Regarding the main 
cargo genes of these elements, the coronafacic acid bio-
synthesis cluster of ICEPca1 is well-known for the viru-
lence in SCRI1043 isolate [12]. Genes encoding proteins 
with putative virulence roles were also found in ICEPca2 
(Phospholipase D), ICEPca4 (Arginase family protein) 
and ICEPcc2 (Glutathione peroxidase). Moreover, we 
identified putative entry exclusion genes in ICEPca2, 
ICEPca4, and ICEPcc1. Lastly, genes encoding proteins 
that may confer antibiotic resistance were observed: MBL 
fold metallo-hydrolase in ICEPca3 and ICEPcc2, and 
mipA/ompV family protein in ICEPca4 (Table S15).

Our analysis of differential gene expression showed 
a higher expression of the gene cluster of coronafacic 
acid biosynthesis carried by ICEPca1 during the asymp-
tomatic stage of P. atrosepticum SCRI1043 infection in 
tobacco, represented by a higher RPKM value in com-
parison with the symptomatic stage and in  vitro cul-
ture (Fig.  4), as presented by [20]. Also, the expression 
of its putative virulence gene, phospholipase D, was 
verified, with the same pattern displayed by the genes 

of ICEPca1 and higher RPKM value in the asympto-
matic stage of infection (Fig. 4). Finally, we analyzed the 
expression of relaxase genes carried by ICEPca1 (loci tag 
ECA_RS03055) and ICEPca2 (loci tag ECA_RS08300) to 
indicate the stage of infection where the mobilization of 
these elements may occur. A different pattern of results 
was verified, and the relaxase of ICEPca1 presented 
greater expression in the symptomatic stage of infection, 
followed by the in vitro culture, and lower expression in 
the asymptomatic stage (Fig. 4). The relaxase of ICEPca2 
exhibited an upregulation of the expression in the in vitro 
culture, followed by the expression in the symptomatic 
phase (Fig. 4).

ICEs in Pseudomonas syringae pathovars
The greatest number of ICEs was found in the Pseu-
domonas pathovars, possibly due to several genomes 
available for the species. Twenty-eight chromosomes 
were investigated for ICEs, and 33 elements were 
found, including 20 distinct elements (Fig.  1, Table S1). 
Regarding the distribution of these elements in bacte-
rial genomes, ICEPsy2 was the most common element, 
present in nine strains, followed by ICEPsy7, which was 
detected in seven strains (Fig. 1). We were able to track 
down seven P. syringae ICEs already cited in the litera-
ture. Therefore, this work brings thirteen novel putative 
elements (Table S16).

Interesting events of ICE co-occurrence have been 
verified in P. syringae chromosomal sequences, mainly in 
the strains Shaanxi_M228 and ICMP 20,586, each with 
four monopartite elements uncovered. Furthermore, we 
spotted the co-occurrence of three monopartite ICEs in 
genomes of CRAFRU14.08, NZ-47 and CRAFRU12.29; 
and two elements in MAFF212063, ICMP 18,708, ICMP 
18,884 and P155 (Fig. 1). Some of those elements could 
be observed grouped in tandem on the chromosome 
sequence with the same att sites, whose arrangement was 
outlined in Fig. 5A. This may be the first time in literature 
that more than three elements are tracked down in one 
genome.

The size of P. syringae elements ranged from 30 kb in 
ICEPsy20 to 161  kb in ICEPsy10, with a mean of 99  kb 
(Table S12), and GC content means of 55%, ranging from 
50 to 57% (Table S12). Attach sites of fifteen elements 
were identified, and all the 32 elements were integrated 
next to a tRNA sequence (Tables S13  and 14). Among 
the elements, a greater similarity was observed between 
ICEPsy4 and ICEPsy11, with 85% nucleotide identity fol-
lowed by ICEPsy1 and ICEPsy14, with 82% of nucleotide 
identity (Fig.  5B). Comparative analysis of gene clusters 
illustrated highly syntenic ICEs in P. syringae and enabled 
us to separate these elements into three groups, based on 
clusters of syntenic genes. Group 1 comprises ICEPsy3, 
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ICEPsy15, ICEPsy16, ICEPsy18 and ICEPsy19. These ele-
ments mostly share conjugation and integration mod-
ules, as well as a few IS sequences (Fig. S4). Group 2 is 
the largest and comprises ICEPsy1, ICEPsy4, ICEPsy6, 
ICEPsy9, ICEPsy11, ICEPsy13, ICEPsy14, ICEPsy17 and 
ICEPsy20; this group shares not only the conjugation and 
integration modules, as observed in group one, but also 
cargo genes encoding relevant functions, such as copper 
and arsenic resistance gene clusters among other cargo 
genes, except for ICEPsy20, the most distinct element 
among the P. syringae ICEs, which shares only an inte-
grase and a maintenance gene (ardR) (Fig. S5). Finally, 
group 3 comprises ICEPsy2, ICEPsy5, ICEPsy7, ICEPsy10 
and ICEPsy12; all elements also share the main modules 
(integration and conjugation). Moreover, ICEPsy2 and 
ICEPsy10 also had a syntenic gene cluster that contains 
T3SS effectors, a cellulase, a transporter gene cluster and 
chemotaxis gene clusters that may be involved in element 
regulation as other cargo genes. This comparison analy-
sis allowed us to verify sequence differences between 
ICEPsy2 in the strains ICMP20586 and Shaanxi_M228, 
due to IS insertions in the elements (Fig. S6).

A large number of cargo genes encoding putative sig-
nificant roles were identified in P. syringae ICEs, mainly 
copper and arsenic resistance gene clusters of ICEPsy8 
and ICEPsy13, which have been described in the litera-
ture (Colombi et  al., 2017b). However, here we report 
those gene clusters in ICEPsy1 and ICEPsy14 (Cooper 
and arsenic resistance), ICEPsy4 and ICEPsy11 (only 
Arsenic resistance). A great number of genes encoding 
proteins with virulence roles were found in some P. syrin-
gae elements, such as T3SS effector genes, which were 
found in ICEPsy2, ICEPsy5, ICEPsy7, ICEPsy9, ICEPsy10, 
ICEPsy12 and ICEPsy18. Cargo genes conferring putative 
antibiotic resistance were also identified, such as the crpP 
family protein, which is carried by twelve elements, and 

mupB of ICEPsy18. Moreover, a gene cluster encoding 
putative Tellurium resistance was identified in ICEPsy2 
(Table S15).

ICEs in Ralstonia solanacearum species complex
The chromosome sequences of one hundred R. solan-
acearum strains were examined, revealing seven unique 
ICEs (six found in R. pseudosolanacearum genomes and 
one found in R. syzygii) (Fig. 1, Table S2). Most of those 
elements had already been described in another work of 
our research group [15] (Table S16), and here we report 
the presence of a known element (ICERps1) in two more 
strains, FJAT91-F1 and FJAT91-F8, and a novel element, 
ICERps4, detected in UW386. ICERps4 has a size of 
56.3 kb, 62,4% of GC content, and is inserted in a tRNA 
sequence (Tables S12, S13 and  S14). The alignment of 
the sequences revealed similarity between ICERps4 
and ICERps1, ICERps2 and ICERps3, with nucleotide 
identity percentages of 79%, 81%, and 78%, respectively 
(Fig. S3D). It was illustrated with syntenic gene clusters 
between these elements comprising the conjugation 
module and other cargo genes (Fig. S7). These elements 
carry cargo genes that encode a putative role in bacte-
rial adaption, such as Glutathione S-transferase as the 
element Tn4371 and ICERps3, and gamma-glutamylcy-
clotransferase carried by ICERps1. Likewise, we were able 
to identify genes with a putative effect on virulence, such 
as amidohydrolase from ICERsy1, and SDR family oxi-
doreductase, present in Tn4371 and ICERps3. Lastly, the 
ICERps1 also carries a Superoxide dismutase gene with a 
putative antioxidant resistance role (Table S15).

ICEs in Xanthomonas campestris pathovars
We started our research with chromosomal sequences 
of eighteen X. campestris strains, in which we track 
down two different ICEs, which are two novel elements 

Fig. 5 P. syringae ICEs. a P. syringae ICEs co-occurrence and in-tandem configuration. (White rectangles: bacterial chromosomes – small colored 
rectangles: ICEs, the colors represent different elements); b P. syringae ICEs identity matrix heatmap: red—high identity, purple -intermediate 
white—low identity
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(ICEXca1 and ICEXca2). ICEXca1 was found in the chro-
mosomes of B100 and 3811 strains and ICEXca2 in the 
chromosome of CN03 (Fig. 1, Table S5). The size of the 
element ICEXca1 varied on the different strains: 64.1 kb 
in B100 and 64.5  kb in 3811. Moreover, the size of the 
ICEXca2 element was 83.7 kb; the GC content was 61% 
and 60%, respectively (Table S12). The attachment sites 
of the elements were described, and both were inserted 
in tRNA sequences (Tables S13  and S14). The elements 
shared low similarity, with a nucleotide identity percent-
age of 47% (Fig. S10E), however, they have highly syn-
tenic gene clusters (Fig. S8). Both elements identified in 
X. campestris carry cargo genes encoding putative roles 
in virulence. In ICEXca1, we find genes encoding an 
aminotransferase and a lytic murein transglycosylase in 
ICEXca2. This element also carries two putative aviru-
lence effector genes and cargo genes, such as Inositol 
hexakisphosphate, which may be related to the adaption 
of these bacteria (Table S15).

ICEs in Xylella fastidiosa
The analysis of chromosomes of twenty-one X. fastidi-
osa strains resulted in the discovery of three distinct 
ICEs from a total of four elements (Fig.  1, Table S8). 
The size of the element ranged from 88  kb in ICEXfa1 
to 158 kb in ICEXfa3, and the mean GC content was 56 
ranging from 54 to 66 (Table S12). The insertion of the 
element ICEXfa1 diverged from the others since this ele-
ment was found integrated next to the ABC transporter 
gene; ICEXfa2 and ICEXfa3 were found integrated next 
to tRNA sequences. Moreover, only the attachment sites 
of ICEXfa2 were identified (Tables S13 and S14). So far, 
only ICEXfa2 in the strain Hib4 has been identified in 
the literature [21]. Hence, our work presents two novel 
elements in X. fastidiosa. The alignment analysis indi-
cates low similarity between the elements with nucleo-
tide identity percentage less or equal to 42% (Fig. S10F). 
Gene cluster comparison analyses were able to dem-
onstrate significant syntenic groups shared by ICEXfa3 
and ICEXfa1, comprising their conjugation and mainte-
nance modules, represented by T4SS genes and a toxin-
antitoxin gene cluster, in addition to other cargo genes; 
ICEXfa2 exhibits low similarity with the other elements 
in this analysis as well (Fig. S9). Cargo genes with puta-
tive roles in virulence were found in all three X. fastidi-
osa elements, including unidentified virulence factors 
that can be found in ICEXfa1 and ICEXfa3. Also, genes 
conferring a putative antibiotic resistance were found in 
both elements (MBL fold metallo-hydrolase- ICEXfa1) 
and (UDP-3-O-(3-hydroxymyristoyl- glucosamine 
N-acyltransferase—ICEXfa3). We identified genes 
conferring putative antioxidant resistance (Superox-
ide dismutase) and a putative role in adaption, such as 

coproporphyrinogen III oxidase in ICEXfa2. Further-
more, a putative Entry exclusion gene was identified in 
ICEXfa3 (Table S15).

The conservation and evolutionary history 
of plant‑pathogen ICEs core‑genes
Beyond cargo genes carried by the ICEs, we also pre-
sent the conservation and evolutionary history of ICEs’ 
core genes, which may play a role in element movement. 
Integrase/recombinase, relaxase, type-IV coupling pro-
teins (T4CPs), ParA, ParB, topoisomerase III, and Sin-
gle-strand DNA-binding protein (SSB) were among the 
most conserved core genes in our dataset (Fig.  6A). In 
addition, we found that ICEs from the same species have 
common core genes, including their presence/absence 
and the average of T4SS components, and those lacking 
the majority of the core genes may be defective elements, 
such as ICEPsy20 from P. syringae (Fig.  6A). P. syringae 
ICEs had the highest T4SS component average (22 genes 
set). Next, we group these core genes from putative intact 
elements and constructed a tree based on the concat-
enation of eight backbone gene alignments. The spe-
cies-related ICEs were clustered into four groups on the 
phylogenetic tree. P. syringae ICEs, the most conserved 
cluster, A. tumefaciens, R. pseudosolanacearum, and a 
cluster including ICEs from Pectobacterium spp. and 
Dickeya spp. (Fig.  6B). These findings might imply that 
these elements have the same common origin. Neverthe-
less, we found clusters with different species, suggesting 
that the ICEs genes themselves are conserved (Fig. 6B).

Discussion
The limited understanding regarding ICEs has been over-
come in recent years due to the increased availability of 
whole genome sequences [4, 5, 22]. Some studies have 
addressed the presence of ICEs in phytopathogenic bac-
teria but have not dealt in-depth. However, it is neces-
sary to fully understand the relationship between ICEs 
and economically important plant pathogenic bacteria [3, 
10]. Through an in-silico investigation of ICEs using 300 
genomes available at NCBI, we have identified and char-
acterized 78 putative ICEs integrated into the genomes of 
the top ten phytopathogenic bacteria. As expected, most 
ICEs were found integrated into tRNA sequences [4]. 
These elements encoded core modular genes, including 
genes that allow Integration/excision modules, conjuga-
tion, maintenance and regulation modules [4]. In general, 
evidence of ICEs features such as GC content indicates 
a slightly lower value than expected in the host genome, 
suggesting that these elements may have been acquired 
recently and probably be under selective pressure to 
adapt to the codon host’s codon usage [23, 24]. Some ele-
ments also carry entry exclusion genes (eexn and traG), 
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which can avoid redundant transfer of ICEs leading to 
host energy savings [25, 26]

We found no ICEs in X. oryzae pv. oryzae, X. axonopo-
dis or E. amylovora, possibly due to a bias in the software 
system used, since we are dealing with highly diverse 
elements and the number of complete genomes avail-
able for these species. However, we search for ICEs in 83 
complete genomes of X. oryzae pv. oryzae and, despite 
its large repertoire of insertion sequences [27, 28], no 
ICE was found. Similarly, we investigate 100 sequences 
of RSSC complete genomes, 40 new genomes more than 
those analyzed by [15], and one novel ICE (ICERps4) 
was reported for RSSC. We hypothesize that the present 
variation of ICEs in genomes of different bacterial spe-
cies may be related to a type of mechanism to control the 
entry of these elements into cells, which can be more or 
less rigorous, thus allowing or not the acquisition of ICEs 
by host cells.

Most of the identified elements were found to 
carry genes with putative functions for adaptation 
and virulence. Putative antibiotic resistance genes 
were also identified, which can be related to the ICEs 

maintenance module, although they have not been 
classified in the same way. Regarding the virulence fac-
tors found, an increased number of T3SS ORFs was 
observed in ICEs. This secretion system is an important 
virulence trait for phytobacteria that allows the trans-
location of effector proteins into plant cells, either by 
changing their metabolism or suppressing defenses 
[29, 30]. Furthermore, we also found genes that encode 
hydrolytic enzymes involved in host cell wall degrada-
tion as the second most prevalent group of virulence 
factors in our ICEs. Thus, our work highlights the 
importance of ICEs for a possible function in parasit-
ism evolution. Conserved core genes found in the ICEs 
may contribute to the element’s mobility and enhance 
the spread of significant putative virulence genes in 
phytopathogenic bacteria.

In conclusion, our results suggest a putative associa-
tion between ICEs and plant pathogen bacteria fitness. 
Our in silico study opens the doors to further experi-
mental investigations that should be carried out to 
improve knowledge about the role of ICEs and their 
cargo genes in phytopathogenic bacteria.

Fig. 6 ICEs core-gene conservation and evolutionary history. a Plot of eight core genes found in ICEs dataset with the number of components of 
T4SS grouped by species. Blue colored square indicates the presence of the gene in the element and the colorless square indicates the absence. 
Abbreviation for Rec, Recombinase; T4CP, type-IV coupling proteins; topo III, topoisomerase III; Single-strand DNA-binding protein (SSB). b Maximum 
Likelihood tree based on the eight backbone gene alignments. The General Time Reversible model and a bootstrap confidence value of 1,000 were 
applied to the tree. The alignment and phylogenetic analysis were done using MEGA X. The tree is drawn to scale, with branch lengths measured in 
the number of substitutions per site
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Materials and methods
Data
Three hundred complete genomes of phytopathogenic 
bacteria of economic and scientific impact [13] were 
downloaded from the National Center for Biotechnol-
ogy Information (NCBI—http:// ftp. ncbi. nih. gov/ assem 
bly) in July 2020. The chromosome sequences in Gen-
Bank format were used to search for ICEs (Tables S1, 
S2, S3, S4, S5, S6, S7, S8, S9 and S10).

Identification and the delimitation of integrative 
and conjugative elements
To uncover sequences of ICEs in bacterial chromo-
somes, we resort to a method similar to that applied by 
Gonçalves and Santana [16]. Thus, we perform a search 
of the element sequences using BLASTn [31] against 
known ICEs deposited in the ICEberg database [32, 
33], and only sequences that obtained an E-value less or 
equal to  10–5 and coverage more or equal to 50% were 
selected. We submit the nucleotide sequences of ICEs 
to the ICEfinder software system (https:// db- mml. sjtu. 
edu. cn/ ICEfi nder/ ICEfi nder. html), an online tool pro-
vided by ICEberg 2.0 that identifies signature features of 
integrative and conjugative elements as integrase gene, 
T4SS, and directed repeats sequences (DRs) in bacterial 
genomes [32, 33], OriTfinder [34] (https:// tool- mml. 
sjtu. edu. cn/ oriTfi nder/ oriTfi nder. html) that identifies 
transfer origin sequences in bacterial chromosomes, 
among other features, which indicates the presence of 
the ICE, MOBscan (https:// casti llo. dicom. unican. es/ 
mobsc an/) that identifies relaxase MOB families, the 
CONJscan module of MacSyFinder (https:// galaxy. 
paste ur. fr) that identifies conjugative systems in bacte-
rial genomes searching for Type IV secretion systems 
[35]. We also execute a manual search on the sequences 
of complete and annotated chromosomes looking for 
ICEs signature genes: genes that are part of the T4SS 
involved in the conjugative transfer, such as tra, vir0, 
or trb, and integrase (int) [5]. The attachment regions 
(att site) that provided upper and lower boundaries of 
the elements were identified in ICEfinder, but when the 
att regions were not detected, we manually identified 
them using BLASTn. We initially delimited the upper 
bound of the element by looking for genes of integrases 
close to tRNAs, then, that region between these genes 
was selected to make the BLAST look for a repeated 
sequence in another position of the genome that was 
close to the coordinates the possible final portion of the 
element given by ICEfinder. ICEs were named following 
patterns already described [36].

The characterization of carrying genes
The annotation of protein sequence was performed 
using Uniprot (https:// www. unipr ot. org/) [37], and 
Pfam (http:// pfam. xfam. org/) [38] protein databases. 
Putative functions of accessory genes were investi-
gated by performing a BLASTp against Pathogen-host 
Interactions database (http:// www. phi- base. org/) [39], 
Virulence Factor Database (http:// www. mgc. ac. cn/ 
VFs/) [32, 33] and Type III secretion system effectors 
database (http:// effec tors. bic. nus. edu. sg/ blast. php) 
[40]. The parameters used to identify sequence coding 
proteins were: e-value less or equal to  10–5 and amino 
acid identity greater than 30% [15]. Subsequently, the 
nucleotide sequences of the identified elements were 
downloaded in GenBank format and analyzed using the 
Geneious® software system (Biomatters Ltd.) for the 
characterization of the excision and integration, conju-
gation, regulation and maintenance modules.

Differential expression analysis
The differential expression analysis was performed 
using RNAseq data from P. atrosepticum isolate 
SCRI1043 corresponding to two stages of infection in 
the tobacco plant (asymptomatic and symptomatic) 
and an in vitro culture. The data are available in NCBI 
BioProject (accession number PRJNA403794) [20]. The 
Geneious software system was used for the analysis, 
following the Expression Analysis tutorial with default 
parameters. In order to study the gene expression of the 
ICEs present in the genome, the element sequence was 
used as a reference to map the reads, and the differen-
tial expression was measured. Reads per kilobase per 
million (RPKM) values were plotted in GraphPad Prism 
version 8.4.3 to generate heatmaps.

Comparative analysis
Nucleotide sequences in fasta format of the ICEs 
identified were submitted to ClustalW [41] to gener-
ate Pairwise Identity Matrices for Heatmaps creation, 
using GraphPad Prism version 8.4.3 for Windows. 
The sequences were also submitted to Mauve [42] and 
clinker clustermap.js [43] to generate gene cluster com-
parison and synteny analyses. Core genes were aligned 
in ClustalW [44] and concatenated in Mesquite soft-
ware Version 3.70 (http:// www. mesqu itepr oject. org). 
The maximum likelihood tree was aligned and con-
structed using MEGA X [45] based on the eight back-
bone gene alignments. The General Time Reversible 
model and a bootstrap confidence value of 1,000 were 
applied to the tree.

http://ftp.ncbi.nih.gov/assembly
http://ftp.ncbi.nih.gov/assembly
https://db-mml.sjtu.edu.cn/ICEfinder/ICEfinder.html
https://db-mml.sjtu.edu.cn/ICEfinder/ICEfinder.html
https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html
https://tool-mml.sjtu.edu.cn/oriTfinder/oriTfinder.html
https://castillo.dicom.unican.es/mobscan/
https://castillo.dicom.unican.es/mobscan/
https://galaxy.pasteur.fr
https://galaxy.pasteur.fr
https://www.uniprot.org/
http://pfam.xfam.org/
http://www.phi-base.org/
http://www.mgc.ac.cn/VFs/
http://www.mgc.ac.cn/VFs/
http://effectors.bic.nus.edu.sg/blast.php
http://www.mesquiteproject.org
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